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1. Introduction

1.1 Motivation

The ability to "see" through foliage has long been a subject of inves-
tigation for both civilian applications (finding downed aircraft in
dense forestation) and military requirements (finding tactical targets
concealed in foliage).

Wideband radars operating in the low microwave bands (and be-
low) provide the potential for automatic recognition of foliage-
concealed objects by spectral analysis of the objects' signatures.
These spectral signatures appear to lend themselves to analysis by
multiresolution methods-such as the wavelet transform-instead
of classical Fourier methods. It is the purpose of this report to show
that multiresolution methods do indeed provide target-recognition
performance superior to the Fourier transform in terms of target-
detection reliability, clutter rejection, and computational efficiency.

1.2 Organization

I begin by presenting the motivation for synthetic-aperture radar
(SAR) and briefly describing the ultra-wideband foliage-penetrating
SAR designed by the Army Research Laboratory (ARL) in Adelphi,
MD. An analysis of wideband target signatures is presented, with a
focus on target resonance effects and modeling. Resonance-based
target-recognition methods are introduced, and analyses through
multiresolution techniques are motivated. Performance of various
multiresolution bases is presented and compared to Fourier-basis
performance. Finally, conclusions are provided, with recommenda-
tions for further investigation. Appendix A discusses SAR image
formation, including conventional Fourier processing and the back-
projection algorithm. Appendix B tabulates the spectral data used in
the analysis, and appendix C summarizes the performance data.

1.3 Contributions to the State of the Art

Currently, the preferred method for spectral analysis of resonant
signatures--the singularity expansion method (SEM), a contempo-
rary adaptation of Prony's algorithm [1]-is computationally inten-
sive and requires unrealistic signal-to-noise levels [2]. An alternative
approach is to use a Fourier transform to recover the harmonic com-
ponents present in the resonant signature, but Fourier methods do
not accurately model the frequency-dependent decay characteristics

7



of the response. Instead, I present a method of resonant-signature
analysis using multiresolution bases (e.g., the wavelet transform),
which model the behavior of wideband resonant decays better than
Fourier methods, with lower computational order and greater noise
immunity than the Prony method. Although I use Fourier perform-
ance as a basis for comparison with multiresolution methods, I do
not use Prony's algorithm because of its poor performance in low
signal-to-noise environments [3].
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2. Background and Motivations

2.1 Motivation for Ultra-Wideband SAR

Range resolution in real-aperture radar systems is generally defined
in terms of system bandwidth (Af) and propagation velocity (c) [4],

C
. 2Af ' (1)

while azimuth and elevation resolutions are defined by operating
wavelength (X), aperture dimension in the orientation of interest
(LA), and range to target (R) [5],

LA's-IIT7 " (2)

Automated target-recognition systems generally require a large
number of resolution cells ("pixels") on the target to achieve a spe-
cific performance level [6], and human-based targeting systems have
similar requirements. Thus, the desire for automatic target recogni-
tion (ATR) capabilities has motivated increases in system band-
widths, operating frequencies, and aperture sizes. Increased system
bandwidth is often accommodated by the use of higher carrier fre-
quencies, so that bandwidth occupancy is kept relatively small
("narrowband") and system complexity low; these higher carrier
frequencies have the additional benefit of increased azimuth
resolution.

Higher frequencies, however, suffer from increased scattering and
atmospheric attenuation. Attenuation effects at higher frequencies-
from scattering and ohmic loss of the foliage medium-preclude
penetration into foliage, thwarting attempts to locate targets ob-
scured by trees or other flora. Thus, foliage-penetrating radars are
forced into lower frequency bands (generally L-band and below),
where the large bandwidths required for high range resolution yield
high bandwidth occupancies--sometimes several octaves or more.
Lower operating frequencies also yield poorer azimuth resolution,
which can be a serious problem for target-recognition tasks that re-
quire fine resolution in both range and azimuth. Fixing the operat-
ing frequency of the radar, we can improve azimuth resolution by
decreasing the range to the target or increasing the aperture size in
the azimuth dimension. Since target range is usually dictated by op-
erational constraints-and thus not subject to alteration-aperture
modification remains the only option for improving azimuth
resolution.

9



In the real-aperture case, however, it is not practical to achieve high
resolution by simply increasing the physical aperture; for example,
at A = 1 ft and R = 1000 ft (short range in most applications), a 1000-ft
antenna would be required to achieve an azimuth resolution of I ft.
Aperture sizes such as these are often impractical at fixed sites, and
entirely unreasonable in mobile applicitions. Thus, the ability to
synthesize a large aperture by modeling it as a coherent, linear array
of smaller antennas is critical to achieving reasonably high azimuth
resolutions at low operating frequencies. The marriage of synthetic-
aperture concepts and high system bandwidths holds the promise of
high-resolution imaging radais at the low operating bands required
for foliage penetration.

2.2' UWB FOPEN SAR

2.2.1 Radar Description

ARL has designed and constructed a fully polarimetric ultra-
wideband (UWB) foliage-penetrating (FOPEN) SAR for the purpose
of exploring the capability to locate and recognize targets embedded
in foliage; the program is being executed in collaboration with the
Air Force Wright Laboratories, the Advanced Research Projects
Agency, the Houston Area Research Center, the Boeing Aircraft
Company, Ohio State University, and the University of Maryland.

The radar is an instrumentation system that traverses a 104-m laser-
leveled track on the roof of a four-story building within the ARL
compound; about 80 hours (10 days of good weather) are required
for collecting one complete aperture of data. The target area extends
from 112 to 267 m in range, mostly populated by deciduous trees
and smaller flora. The tree line begins at a slant range of approxi-
mately 160 m from the rooftop aperture. Figure 1 is a schematic of
the radar/data-collection orientation and image area. The letters A
through G in the figure denote target locations in the images proc-
essed (sect. 3.2.1); X denotes the location of a corner reflector that is
used as a basis for calibration among images.

The UWB system is considered to be ultra-wideband because of its
high bandwidth occupancy. If relative bandwidth is defined as the ra-
tio of bandwidth to center frequency,

QAfm Af
( + f)/2 (3)

a sensor is categorically wideband if its relative bandwidth is 0.1 S Q
< 0.5, and ultra-wideband if its relative bandwidth is 0.5 s q s 2 [7,8].
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ARL's UWB SAR operates across a 950-MHz-wide band, from 50
MHz to over 1 GHz (as determined by the 3-dB points for the an-
tenna and digital oscilloscope, respectively), and thus has a relative
bandwidth in excess of 1.8. A BASS103 (bulk avalanche semiconduc-
tor switch) is used as the transmitter, and drives a TEM horn an-
tenna that effectively differentiates the 1-ns transmit pulse to form
the radiated signal. Peak power is 500 kW; with a pulse repetition
frequency of 40 Hz, the average transmitted power is about 20 mW.
Figure 2 shows the through-the-air (transmitter to receiver) doublet
generated by the system, with the spectral distribution shown in
figure 3.

Figure 1. UWB data-
collection schematic.
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Figure 3. UWB pulse 35
spectrum.
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2.2.2 UTB SAR Image Formation

The ARL LIWB SAR does not use the conventional two-dimensional
(2-D) inverse fast Fourier transform (FFT) to create the radar image.
Since the UWB SAR collects data in the near field and operates in the
ultra-wide band, conventional Fourier processing must be restricted
to very small patches within the image area, and becomes cornputa-
tionally intensive while not yielding a superior quality image. For
these reasons, UWB SAR images are formed by a variant of the
backprojection algorithm commonly used in medical imaging. (See
app A for a description of the wide-band- and near-field-related pit-
falls in Fourier image formation, as well as a brief description of the
backprojection algorithm.)

2.3 Resonance Effects from Wideband Excitations

2.3.1 lVideband RCS

In the narrowband case, a target's echo is typically modeled as a sca-
lar number (d), the radar cross section (RCS) of the target. In general,
however, RCS is a function of wavelength, phase, aspect angle, and
polarization state. Wideband analysis thus motivates a revised defi-
nition of a as a complex quantity, with both magnitude and phase
components [7,9]. In the time domain, the complex RCS can be rep-
resented as a ringing or resonant response of the target. If this reso-
nant "signature" is sufficiently unique, the target can be modeled-
and recognized-by spectral analysis of its resonant response [9-121.

12



2.3.2 Target Resonance Effects

The response of a resonant scatterer to an incident wideband pulse
will generally be composed of two temporally distinct parts, re-
ferred to as the early-time response and the late-time response. The
early-time response--or driven response-is the echo of the incident
pulse, caused by local currents driven on the surface of the object;
alone, it does not convey a great deal of information about the scat-
terer. The late-time response-also referred to as the resonant or im-
pulse response-is a ringdown of the natural frequencies of the tar-
get excited by the incident pulse. These natural frequencies are a
function of the electrical dimensions of the object.

The late-time resonance phenomenon is best illustrated through a
canonical example. The spatio-temporal distribution of current
along a thin-wire dipole of length L is described by

i(x,t)- o e" sin- 2-rx sin 2(--rct, (4)

where 10 is the value of the current at a current antinode [13,14].
Boundary conditions require i(xt) = 0 at x = 0 ind x = L, which lead
to the condition 2;rL/X = ktr, k = 1, 2, .... For x = L/2, substituting w
for 2xrcI/A in (4) and using the relation L//A = k/2, we obtain

i(L/2,t) - - e 0sin(-•)sin.t), k- 1,2, (5)

Clearly, i(L/2,t) = 0 for k even; these are the cases where the current
distribution is antisymmetrical along the dipole (thus, no energy is
radiated). Meaningful solutions to equation (5) exist for k odd
(henceforth referred to as radiating harmonics); these are the funda-
mental (k = 1) and higher (k = 3, 5, ...) harmonic resonances of the di-
pole. Note that Io in equation (4) has been replaced by 1/n2 in equa-
tion (5), indicating that the initial amplitude of the current flow is
wavelength dependent [15,16]; this yields radiated-field strengths
that scale with wavelength. The initial strength of the radiated field
at each harmonic will be linearly proportional to the amplitude of
the surface current, and will be governed largely by the Q-factor of
the dipole at that frequency [17]. The e"at factor in equation (5) indi-
cates that the current decays with time, unless the forcing function
that initiated the current flow is reapplied. Since we are considering
only late-time effects, we can assume that the forcing function has
been removed, and the current will decay at a rate proportional to
ak-also known as the damping factor. The subscript k on the damp-
ing factor indicates that the damping is frequency dependent; spe-
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cifically, higher frequency components have greater damping than
lower frequency components [3].

If the index k in equation (5) is redefined as n = (k + 1)/2, the radiat-
ing harmonics of a dipole of length L are defined by equation (6).
Although co is continuous in equation (5), it is effectively quantized
at the radiating harmonics by the sin(kir/2) term; this is indicated by
w being indexed with n in equation (6):

i(L 2, t)-S J) sir(ot.0 (6)

Thus, if a dipole in empty space is illuminated by a copolarized inci.
dent pulse, resonances at the odd harmonic components within the
band of the illuminating pulse [1,11] will be excited, and will decay
exponentially once the forcing function has been removed. For ex-
ample, consider a resonator illuminated by a wideband pulse occu-
pying a band from flo to fhc if the resonator has a fundamental har-
monic at fo and radiating harmonics atfn = nfo, n = 1, 2, 3, ..., then the
resonator's response will be described by

{ .t. f.,,h
R(t) f A(. )A&E.(t) sin (2,irt)u(t), '41) 0 otherwise ' (7)

where An is the maximum amplitude and En(t) is the time decay of
the nth harmonic component of the response, and u(t) is the unit-step
function.

Since the dipole is symmetric with respect to a plane oriented nor-
mal to the dipole's major axis, it will behave identically at all aspect
angles within the plane, yielding a signature that is aspect-angle in.
variant. Anisotropic objects will typically provide signatures that are
modulated to greater or lesser extent by the aspect angle between
the source and the scatterer. This topic is discussed in greater detail
in section 2.3.3.

If we now consider a complex target composed of multiple resonant
"surfaces," we can model the target as a linear network of individual
resonators. Linearity allows us to apply superposition: the response
of the overall system is the linear sum of the responses of the indi-
vidual resonant elements, and equation (7) can be generalized as

R( t) - 1t(f,,.)AninEm,() sin (2urL,,t)u(t) (8)
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for M resonant structures in the illuminated target. If we assume
that the resonant frequencies of the target are unique to that class of
object, then the target can be dearly identified by its resonant signa-
ture [2,9 -12). While the uniqueness assumption is not likely to be
valid for narrowband illuminations, it becomes more realistic as the
bandwidth of the illuminating pulse increases [11]. Of course, the
transmitted signal need not be ,.n impulse-but it most, at a mini-
mum, span the range of significant resonant components 1I].

2.3.3 Phenomenology of Wideband Target Signatures

2.3.3.1 Incidence-Angle Dependence

Since most realistic targets are not isotropic, their signatures can be
expected to vary with aspect angle. While the signature's intensity is
often substantially modified by changes in aspect angle-even for
relatively "simple" targets (fig. 4)-the impulse response remains
largely invariant, except for attenuation effects such as shadowing
[11,12); similar statements hold for depression angle. Thus, while
intensity-based ATR algorithms require many target "templates,"
representing critical increments in aspect and depression angles, a
single resonance.based template-with an ATR algorithm designed
to accept attenuated (or missing) components-should perform ad-
equately at all angles of view. (The term "template" is used some-
what loosely here in spectral-analysis references.) This reduces the
storage requirements of the ATR processor, and, with only a single
template to consider for each target, processing requirements are re-
duced as well. These improvements can be critical in applications
that need real-time, on-board processing capabilities.

This does not suggest that aspect-angle modulation of the resonant
signature is insignificant; as shown elsewhere [11), spectral attenua-
tion across various look angles can exceed 20 dB (fig. 5). These
effects, however, are expected to be less pronounced in the impulse-
response case than they are in the intensity-plot case, which is sub-
ject to cardinal aspect angles (where the signature needs to be

Figure 4. 20' double (a) (b) 10
cone: (a) geometry 5
and (b) measured 0
backscatter cross -5
section (18 ). <-1 0

S-15
-21 0
-25

0 120 240 360
Aspect angle ()
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Figure 5. Measured 0.0

RCS of 1/72-scale
model of an aircraft
for three different -10.0
angles of incidence
(0 Incidence is nose-
on) [11]. -20.0 .'"

9O" .- ° ........
45*;-30.0 0.

- -40.0

-60.0 I I I , I
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

Angular frequency (t)

sampled more frequently with angle), "hot spots" (which may re-
quire high dynamic-range templates), and specular flashes (a combi-
nation of both problems). Thus, incidence-angle modulation of the
target signature should be easier to accommodate in the spectral-
analysis domain than in the intensity-based domain.

2.3.3.2 Polarization Effects

Another consideration in target modeling is polarization. A target's
RCS can change significantly with polarization state [9], as shown in
figure 6. In the impulse-response domain, polarization effects can
modify the resonance states excited within the object by the incident
pulse. These effects tend to attenuate-or even eliminate-specific
components of the impulse-response signature [11]; thus, a robust
ATR algorithm will have to account for these effects when process-
ing target signatures.

The combination of aspect-angle dependence and polarization ef-
fects on a target's impulse response can be significant; for example,
there may exist no combination of aspect angle and polarization
state that will excite all critical resonances within the object, and
some combinations may yield little or no response at all. However,
in situations in which the target's resonant response is severely at-
tenuated or absent, it is reasonable to assume that the intensity plot
will have a correspondingly weak or missing signature, since the
RCS of the object will be greatest at the resonance points [11]. In fact,
resonance-point enhancement of RCS may yield adequate spectral
signatures (albeit weak) in instances where there is insufficient
broad-spectrum return for ao intensity-based ATR algorithm to reli-
ably detect the presence of the target.
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Figure 6. Dispersive polarimetric signatures! (a) copolarized lossy dielectric cylinder, and (b) cross-
polarized spruce twig (picea abies) [9].

Independent of aspect angle and polarization state, modifications to
the spectral signature are possible through operational alterations
and environmental effects (damage to resonant elements, particu-
larly those elements contributing dominant resonances) [11]. While
it is not the intent of this report to address these issues, any robust
target-recognition scheme must be capable ot accounting for these
signature modifications, whether the scheme is a template-based in-
tensity correlator or a resonance-based spectral analyzer.

2.3.4 Signature Uniqueness

As discussed previously (sect. 2.3.2), the resonant-signature unique-
ness assumption is not likely to be valid for narrowband illumina-
tions, but becomes more realistic as the bandwidth of the illuminat-
ing pulse increases. Another factor in signature uniqueness is the
number of clearly distinguishable resonant structures within the tar-
get (that is, structures that contribute dominant resonances) [11].
Obviously, it is essential that the radar band span the range of key
resonances to be used in the ATR process. The significant resonant
frequencies of most targets lie in the 2-MHz to 1-GHz range [12];
since ARL's UWB SAR spans most of this band, most significant
components should be contained in the target resonant signatures
from this radar.

Problems will arise when spectral signatures from differing target
classes have significant cross correlations. In these instances, some
secondary form of processing (contextual analysis, neural-net proc-
e.'sing, human reasoning) may be required to declare an object as
belonging to a specific class of targets. Preliminary studies, however,
have indicated that there is sufficient spectral disparity-even
among similar objects within the same target class--to differentiate
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among complex objects [11]. This is an area that will benefit from
continued investigation to validate the potential for reliable reso-
nance-based ATR, and to compile databases of target resonant
signatures.

2.4 Image-Analysis Methods

2.4.1 Intensity-Based Algorithms

In intensity-based pattern-recognition algorithms, a target model-
or 'template"-is constructed based on observations of the target's
signature and signature characteristics (variance, sensitivity to exter-
nal factors, etc.) and is generally used as the basis for some form of
correlation operation on the data set. That is, the template is com-
pared to the data set at some subset of points within the data, and a
threshold is generally established (usually based on observation of
the template's performance) to define the point at which a template/
data match is "good" enough that we can declare a target recog-
nized. Since the target's intensity signature is typically substantially
modulated by changes in aspect and depression angles [9,18], good
correlation performance most often dictates construction of a sepa-
rate template for each combination of critical-angle increments in as-
pect and depression.

This approach can yield substantial processing requirements. Con-
sider the following example: a typical ATR algorithm may require
templates at an average of every 5* in view angle for both azimuth
and elevation. A SAR with a 30° field of view in elevation will thus
require 6 sets of templates--each set containing 72 azimuth-angle-
dependent templates at a specific depression angle-for a total of
432 templates. If the resolution is 1 m in both range and azimuth,
and typical targets for that system are 3 by 8 m, then a minimum of 24
pixels is required for each template, totaling more than 10,000 pixels
of stored data. Although the storage requirements are not signifi-
cant, the pixel processing required to declare a target can be substan-
tial. Algorithms vary widely in efficiency, but if we consider a sys-
tem optimized to 100 operations per processed pixel (including
overhead), and assume that an average of 216 templates (50 percent)
must be processed for every target cue supplied to the recognition
engine, then 500,000 operations are required for every potential tar-
get. Furthermore, if the detector supplies an average of 2000 target
cues per image, 1 giga-op will be required to process only the target
recognitions (computational order for the target cuer is not consid-
ered here). If the system resolution is increased to 0.333 m. in range
and azimuth, these figures increase by at least a factor of 9. In addi.
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tion, many of the more elaborate target-recognition algorithms re-
quire templates that are larger in extent than the targets-generally
for background contrast matching-resulting in even greater com-
putational order. While advances in computer technology are bring-
ing real-time processing capabilities within reach of the computa-
tional requirements, there still must be a significant investment
made in processing power, weight, volume, and cost. A more effi-
cient means of achieving the target-recognition goal would be ben-
eficial in these applications.

2.4.2 Spectral-Analysis Algorithms

Ideally, we would, like to model a target's signature with a single,
aspect-angle-independent template. While this may not be an attain-
able goal for pattern-matching schemes, spectral-ar • sis methods
provide the potential to reach this objective.

In the spectral-analysis approach, the target is modeled by its key
natural resonances, requiring a significantly smaller set of numbers
to characterize the target [1,3,10-12,15]. The methods typically em-
ployed in extracting the complex natural resonances (poles) of the
target are some variations on the algorithm proposed by Prony
(circa 1795) [11,19-221. (See ref 17 and 20 for translations of Prony's
original work.) The following is a brief description of the Prony
method of singularity extraction, and the limitations inherent in the
method.

2.4.2.1 The Prony Method

The continuous-time transient scattered field from an object in
empty space is defined by

E(t) - ý Ae& , (9)
0.1

where M is the system order (the number of modes in the object's
response); this field is then discretized over N samples [1,21]:

E[n] - t Aee', 0 s n < N . (10)

Here, the {si} are the complex poles--i.e., the ai = i+ jco±i, where the
ai are the damping ratios and wi are the resonant frequencies--the
Ai are complex residues of each harmonic component, Tis the con-
stant sample period, and N is the total number of samples. Equation
(10) represents N simultaneous nonlinear equations in 2M un-
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knowns (M complex poles {si} and amplitudes {Ai}); clearly, a
unique, consistent solution exists only for N a 2M. If this require-
ment is met, the set of simultaneous equations in (10) can be solved
by Prony's method. This method is based on the fact that equation
(10) can be modeled as a polynomial,

•a.Z,-'*'=0, ao -I11

whose coefficients can be obtained from a simple difference equa-
tion:

""fskcN, (12)

where 11 is the estimated order of the system (the system order is gen-
erally not known a priori). If exactly 2T1 samples were taken, then
equation (12) is solved exactly for the am; if the data are over-
sampled (N > 2TI), then a least-squares type of fit will be required for
the am to be obtained. Once the a,,, have been determined, the roots
of equation (11)-which describe the natural resonances through
Z. - e'---define the poles of the model:

s. - TV In Z... (13)

Now, inserting the poles {sin} into the system of equations in (10)
linearizes the system, and solving for the residues Ai is straight-
forward.

This method is very sensitive to noise, and loses even more noise
immunity when multipath effects are factored in [11,21]. Even with-
out multipath considerations, a brief survey of the literature reveals
that a substantial effort has been undertaken to find solutions to the
noise-immunity problems in Prony [20,22-26]. As discussed above, a
least-squares fit will be required if the system is oversampled; if
there is noise present in the system, however, it will significantly
perturb the least-squares solution, since noise does not fit the causal
model of the system [3]. Furthermore, if the estimated order of the
system, 11, is greater than the actual order, M, the solution will con-
tain poles due entirely to noise. Prony provides no means of distin-
guishing these poles from the real system poles. Similarly, if the esti-
mated order is less than the actuil order, the "excess" poles will be
lost, and the remaining poles will be perturbed by their positions [3].
These shortcomings severely limit the efficacy of Prany's method in
applications with signal-to-noise ratios below about 15 to 20 dB [2].
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Pnor noise immunity notwithstanding, the Prony method is also
ccnputationally intensive, as is easily inferred from the formulation
of the method (eq (9) through (13)); inclusion of multipath effects
serves to substantially increase the algorithmic complexity. These
shortcomings motivate spectral-analysis methods with reduced
computational order and greater noise immunity than Prony. We
believe that linear transforms-such as Fourier and wavelets--pro-
vide the desired solutions to these shortcomings. It will be shown
that the multiresolution bases, in particular, model the decay charac-
teristics of complex resonant excitations more effectively than does
the Fourier transform, and thus yield superior performance in detec-
tion of target ringdowns.

2.4.2.2 The Fourier Transform

The Fourier transform is very familiar in signal processing; thus, its
derivation here is unnecessary (the reader is referred elsewhere [27-
301). However, the discrete Fourier transform (DFT) and its
computationally optimized counterpart, the fast Fourier transform,
exhibit some specific characteristics that warrant brief discussion.

Consider a real, continuous-time periodic signal x(4), with maximum
frequencyfmx and period T (i.e., x(t) = x(t + kT) for any integer value
of k). We can discretize this signal by sampling at a constant rate
fsa 2fmx, yielding the discrete sequence x[n]. Taking N to be the fun-
damental period of the discretized signal x[n], we can define the
DFT of x[n] by

N-1

X[kJ - x[n] 14r, W,,,- e'"41N (14)
3.0)

the function WN is an artifice of convenience. For an illustration of
the distribution of the spectral coefficients X[k], consider the Z-trans-
form of a single period of x[n]:

N-1

X[Z] . xln] z-" .,5

Comparing (14) and (15), we can see that the spectral coefficients
X[k] and X(z) are related by

X[k]-X(z)kL , (16)

where K•.k exaIk . The (2.r/N) term in the argument of the expo-
nential divides the unit circle by N, and the index k then steps the
analysis frequencies around the unit circle in equi-angular incre-
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ments. Thus, the DFT corresponds to N equally spaced samples of
the z-transform around the unit circle (fig. 7) [29]. This yields equally
spaced analysis frequencies, as well as analysis subbands of constant
bandwidth. By the definition of relative bandwidth in equation (3),
Fourier subbands can be said to exhibit variable relative bandwidth,
this is also termed "variable-Q" analysis. We can achieve finer reso-
lution in frequency (smaller subband bandwidths) by increasing N,
i.e., increasing the number of samples in the analysis window; this
decreases the time localization of the transformed spectral informa-
tion. Thus, resolution in time and frequency are inversely propor-
tional, and are determined by the length of the analysis window
selected.

It is worth noting that this formulation is independent of the sam-
pling frequency, fv, which corresponds to the 2,r-radians point on the
circle. The point at r radians then represents the maximum permis-
sible spectral component of the original continuous-time signal x(t).
This implies that the DFT coefficients that lie entirely in the third
and fourth unit-circle quadrants (represented by k = 5, 6, 7 in fig. 7)
do not contain any unique information; in fact, they are conjugate-
symmetric points to those that lie above the abscissa, which is clear
from the definition of WN [30]. Therefore, these points represent re-
dundant information for x[n] a real function.

Generalizing x[n] to be a complex sequence, we can rewrite the DFI
as

X[kJ - Re(xlnJ)e(Wk - Im(x[nDIrn(W +

j(Re(x[n1)Im(Wh,. + Im(x[nJ)Re(Wý))}. k -0,1,... N - 1;

Figure 7. Z-plane
samples of k=2
z-transform (for N k=
8) which correspond k=3
to coefficients of2.,/N
discrete Fourier
transform 130].

k--6
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from this, the computational order of the DFT is seen to be propor-
tional to N2, whether x[n] is real or complex (there is a factor-of-two
reduction for x[n] purely real, because the Im(x[n]) terms drop out,
but the computational order remains N2).

Exploiting the symmetry and periodicity properties of WN, Cooley
and Tukey [31] devised an optimization of the DFT, reducing the
computational order to N log2N. This optimization, now termed the
fast Fourier transform (FFT), is widely discussed and derived in in-
troductory signal-processing texts [29,30]. The interpretations of the
DFT spectral coefficients, analysis windows, subband bandwidths,
and frequency resolution apply directly to the FFT; the only differ-
ence is the computational order.

Another formalism in Fourier signal-processing theory is the short-
time Fourier transform (STFT), which is an FFT preceded by a
weighting function (window). If the window is rectangular, the
STFT reduces to a simple FFT. The maximal time-frequency concen-
tration characteristics of Gaussian functions led Gabor to propose
them as weighting functions in 1946 [32]; STFT functions wit:.
Gaussian-weighted windows are referred to as "Gabor wavelets"
[33].

2.4.2.3 Nonstationary Signal Analysis

Fourier processing is well suited to the analysis of stationary signals
with a limited number of components (i.e., sinewaves) spaced over a
relatively narrow band in frequency. If the relative bandwidth of the
signal becomes large, however, certain inefficiencies become appar-
ent. Specifically, variable-Q analysis methods have either poor time
localization (with unnecessary frequency resolution) at the high end
of the band if relatively long analysis windows are used, or poor fre-
quency resolution (with unnecessary time localization) at the lower
frequencies if relatively short analysis windows are used. Compro-
mises are possible, but the above statements still hold in general; fur-
thermore, the situation deteriorates as the relative bandwidth in-
creases.

Consider, for example, an acoustic signal generated by a piano key
being struck: the sustainment of the signal will be composed of fast
decaying high-frequency harmonics and slowly decaying low-fre-
quency harmonics (the, quickly decaying response is often referred
to as the "attack" of the note). A three-tone example of this phenom-
enon is given by

x(t) -i•, sin(w, t + qp') + e-K` s;in(w2 t + q'2) + e-•"' sin(w03 t + 993) ; (18)
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the Ko., term in the exponential indicates the frequer .y-dependent
characteristic of the decay. There will also be a short driven response
before the harmonic ringdown. The unforced decay is illustrated
graphically in figure 8.

Both the driven response and the ringdown generally are wideband
phenomena: acoustic signals can easily span several octaves, yield-
ing relative bandwidths very near 2.0. Modeling the attack of the
note through Fourier analysis is inefficient because of the nature of
fixed-length analysis windows; one must either select short time
windows to provide adequate temporal resolution of the transient
characteristics of the signal-thereby sacrificing frequency resolu-
tion of the slowly decaying lower harmonics (which better charac-
terize the resonant response than the higher harmonics [16])-or
employ longer time windows, which fail to adequately capture the
spectral characteristics of the discontinuity, and will yield poor tem-
poral resolution of the event (fig. 9). Thus, Fourier analysis is sub-
optimal, at best, for analysis of wideband transient signals.

Signals such as these-fast decaying high-frequency components
with slowly decaying low-frequency components-are often en-
countered in practice [32], and, in particular, characterize the
wideband resonant-target responses discussed in section 2.3. A de-
sirable method of analyzing these signals would capture the tran-
sient properties of the signal while effectively modeling longer term,
slowly decaying characteristics. This requires a "multiresolution"
approach to the problem: higher, quickly decaying components are
analyzed with shorter, broader bandwidth windows (which are
poorly resolved in frequency but well resolved in time); lower,
quasi-stationary components are analyzed with longer, narrower
bandwidth windows (poorly resolved in time, but well resolved in
frequency). Decompositions such as these are often referred to as
"multiresolution pyramids." The wavelet transform, which unifies
much of the theory surrounding multiresolution methods, provides
the potential to model wideband resonance characteristics with
greater efficiency than the Fourier transform.

Figure 8. Acoustic
"attack" of a note.
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Figure 9. Modeling xNt) x(t)
attack of a note with
Fourier (fixed)
analysis windows-
(a) shorter analysis
windows provide
good temporal
resolution, and
(b) longer analysis \.e
windows provide
improved frequency
resolution. t t

(a) (b)

2.4.2.4 The Wavelet Transform

Although various concepts related to wavelet theory were expressed
nearly a hundred years ago [34,35], the contemporary, unified for-
malism is a rather recent development in the signal-processing field.
A substantial volume of wavelet-related literature has been pro-
duced in recent years-some of the better treatments can be found in
the references [36-40]; also see Chui [41] for an excellent survey of
recent papers on wavelet theory and applications. Hence, only the
relevant concepts are developed in this discussion.

Described succinctly, wavelets are dyadic (power-of-2) dilations and
translations of compactly supported functions; they may also be
mutually orthogonal, although this is not a requirement. Consider a
set of functions ha,b(t), defined as

heb(t) ---- Ih(t-b), a, bER, a -0 , (19)

where h is supported over some closed interval I, with h = 0 else-
where. Let V be defined as the space of signals with finite energy,
V C LV(R) (henceforth referred to as the signal space), where R is the
set of real numbers, and L2(R) denotes the space of real numbers
with dimensionality 2, considered as one geometric whole. If the ha,b
span the signal space such that they form an orthonormal basis in V,

Sd-1, a-a'andb-b'h.0t)hX(t)dt- O, otherwise (20)
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then an arbitrary signal x(t) can be represented as a linear projection
onto this basis. The projection, or decomposition, of x(t) onto the ba-
sis is represented simply as a weighted sum of basis functions:

x(t). c (t) . (21)

A necessary condition for the existence of a unique solution to (21) is

that the h,,b are square-integrable functions; this condition is met if h

is square integrable [37,391.

Analyzing (19), we can see that the index a governs the time basis for
the function h, wl dch can be interpreted inversely as frequency; this
behavior is iflustted in figure 10. For lal > 1, the time basis is con-
tracted, and function hab is extended over a greater interval (fig.
10b); this, of course, serves to lower the frequency components in-
herent in h. Similarly, for lal < 1, the time basis is expanded ("di-
lated"), and h0,b is contracted proportionally; this shifts the spectral
components of f .' . a higher frequency range. For la'< 1, ha,b
"lives" on a shorte interval (fig. 10c) than it does in the Ial > 1 and
lal - 1, and thus does not span the entire interval; this is equivalent
to not spanning the signal space V. We can ensure the span of V by
translating the function within the interval so as to ensure that the
interval is spanned at all points; this is shown in figure 11 (note that

Figure 20.
Contractions and iI 1
dilations of h: (a) j a
= I (unity time
socaling), (b) In a > I
(contraction), (c) a

'I (dilation).

(a)

(b) (c)
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this does not ensure the orthogonality of the spanning set). Thus,
higher dilation levels-representing higher frequency oscillations--
require more translations to ensure the span of V.

Since the basis functions hab are not constrained to be sinusoidal,
they are generally wider band than their sinusoidal Fourier counter-
parts (in comparison, the Fourier basis functions are impulses in fre-
quency space). For this reason, the notion of scale is introduced in
wavelet analysis: higher dilation levels, which loosely correspond to
higher frequency bands, are designated as smaller scales; less di-
lated functions correspond to larger scales.

Up to this point, we have not constrained the values of the param-
eters a and b (except that a must be nonzero). In signal-processing
applications, however, there is a natural discretization of these pa-
rameters: consider two scales al and a2, such that al < a2 these scales
correspond to two frequency bands, A14 > Af2. If, in fact, Af1 = 2Af2,
then the data at scale 42 can be decimated by a factor of 2 (assuming
one-dimensional, discrete data). Applying this recursively, we see
that dyadic dilations yield convenient results for discrete signal-
processing applications; thus, we discretize the parameter a as
a = 2"n, where m EZ (Z is the set of all integers). This also discretizes
the parameter b: if the "primary time window" is defined as the in-
terval spanned by the largest scale (least dilated) basis function
among the ha,b, the number of translations required to span the pri-
mary time window at any given scale is just the dyad level of the
scale. That is, at scale m, 2m translations are required to ensure the
span of the signal space. This yields a sparsely sampled discrete
sublattice with dyadic spacing in V, which is a very appealing result
in most signal-processing applications [36,39].

The functions ha,b have characteristics similar to those of spatially
confined waves, such as standing waves. Thus, the French geophysi-
cist Morlet, who first proposed applications of these functions in the

Figure 11. (b) (C)
Translations of h:
(a) in I = 1, b = 0 (no (a)
dilation, no
translation), (b) I a I =
0.5, b = 0 (dilation
with no translation),
(c) an I = 0.5, b = 1
(dilation with
translation).
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analysis of seismic data [42], referred to them as "wavelets of con-
stant shape" (to contrast them with the Fourier basis functions,
whose shapes change across subbands); this term was subsequently
shortened to "wavelets." Finally, the wavelet at scale m = 0 is widely
referred to as the primary, basic, prototype, or mother wavelet (since it
gives rise-through successive dilations and translations--to the en-
tire progeny of wavelets that constitute the wavelet basis). For or-
thogonal bases, the primary wavelet is generated as a modulation of
a scaling function, which is a low-pass filter satisfying the "dilation
equation" for N coefficients ck:

90 - I ctp2t - k), (22)

the primary wavelet is then generated from [36,39,40]

W(t) - I (-1)•k•.4 (2t - k) . (23)

(Here, I use W for dyadically scaled wavelet bases and k for the
translation parameter, notation commonly used in the engineering
literature.)

As an example, consider the Haar basis. The Haar scaling function,
which satisfies the dilation equation (22) with co = cl = 1 (ck = 0 else-
where), is simply the "box" function (fig. 12a), supported here on the
interval [0,1]. The Haar basic wavelet is then defined by equation
(23) (fig. 12b). The infinite family of basis functions, defined b)

W Ak(t) -W(2"t - k), m & 0, 0 % k < 2', m,k E Z , (24)

is shown in figure 13 for the first two dilations of the basic wavelet
and their associated translations; the scale.deendence of the analy-
sis-window length is distinctly illustrated in this figure. Clearly, any
piecewise-continuous function (i.e., any sample-and-hold signal)
can be represented by continually smaller analysis scales until the
temporal support of the smallest scale is equal to the sample period
of the signal Thus, the Haar basis should provide satisfactory per-
formance in the analysis of most digitized signals, although it typi-
cally is rnot optimal.

Note that the wavelet basis is purely real, in contrast to the Fourier
basis, which is complex. It is partly for this reason that wavelet bases
are so computationally efficient: the Haar-basis transform can be re-
duced-through a butterfly operation similar to the FFT-to a com-
putational order linear in N [40]. This is substantially more efficient
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Figre 12. Haar (a) (bt) () W(t)
scaling function (a)
and basic wavelet (b).

0 1
01 1 0 1

Figure 13. First two
Haar dilations and
associated II, 0(t)

translations.

W,,o(t) 1

o W 2,' (t)

o 1

I,(t)

o 1

than the FFT, whose computational order is N logWN. Although com-
plex wavelet bases can be constructed (to recover phase information
from the analyzed signal, for example), it is the real bases that are
most often employed in wavelet-based signal-processing applica-
tions.
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2.4.2.5 Wavelet Analysis

The time dependence of the spectral bands in both Fourier and
wavelet analysis is best illustrated through introduction of the time-
frequency plane. The essential concentrations of the basis functions
in both time and frequency for both analysis methods are displayed
in the time-frequency planes of figure 14. Note the dyadic time-scale
tiling of the wavelet plane; it is this scaling that provides the wavelet
transform's superior performance in the analysis of wideband,
nonstationary phenomena. (The bottom row in fig. 14b represents
the scaling (low-pass) function, for which the window size is identi-
cal to that of the primary wavelet, represented by the next higher
row of tiles. For bases that do not have a corresponding scaling func-
tion, th;s row will be absent from the lattice structure.)

Let us now revisit the transient-signal modeling problem presented
in section 2.4.2.3. Using the wavelet transform, we can efficiently
model the discontinuity at the initiation of the transient. As depicted
in figure 15, the smaller scales-well resolved in time-capture the
fast high-frequency decays, while the larger scales--well resolved in
frequency-effectively model the slowly decaying low-frequency
components. Note that these signals are very similar to the wide-
band ringdowns described in section 2.3; thus, we expect the
multiresolution transform methods t- provide an effective basis for
analysis (.f resonant target signature, in iJWB SAR imagery.

Figure 14. Time- (a) (b) ,

frequency lattices:
(a) Fourier basis,
(b) wavelet basis.

Figure 15.
Multiresolution
modeling of transient
phenomena.

f f•- fl
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3. Target Recognition in UWB SAR Imagery

3.1 Prediction of Target Resonance Effects

It is always reassuring when the observed behavior of a system
agrees closely with prediction; for this purpose, a predictive model
must be constructed to describe and evaluate the behavior of the
system under observation. Ior the purpose of this report, the canoni-
cal "target set" will be composed of two dipoles of different dimen-
sions: a 166.4-cm dipole with a 7.62-cm-diam circular cross section,
and a 114.3-cm dipole with either a 3.81-cm square cross section or a
5.08-cm-diam circular cross section (for reasons beyond the scope of
this report, I consider only the 5.08-cm circular cross section when
modeling the response of the 114.3-cm dipole). These targets were
selected for &,, straightforward predictability of their characteristic
resonant responses to wideband excitations.

To predict the characteristic responses of the targets, I use the for-
mulation developed in section 2.3. Equation (4) describes the distri-
bution of current along a thin-wire dipole (diameter d << L); a suit-
able application of boundary conditions leads to the relation A =
2L/k. This yields fundamental harmonics for thin-wire dipoles with
L = 114.3 and 166.4 cm at 131.1 and 90.1 MHz, respectively. The thin-
wiru assumption, however, is not directly applicable in this case,
sin.-( the cross sections of the dipoles used are significant [43]. The
coarequence of a nontrivial cross section is to increase the effective
electrical length of the rod ("end effects") [43-45]. These corrections,
described in detail elsewhere [43], are shown graphically in figure
16. For the dipoles under consideration here, L/d is 22.5 for the 114.3-
cm dipole, and 21.8 for the 166.4-cm dipole; these values correspond
to correction factors (K) from figure 16 of approximately 0.945 in

Figure 16. Electrical-
length corrections for 1C - M - t
dipoles of large cross 1..°,..:, 0-.98: 65 4°
section 145). 011 1'

70.96 0, Ior s- FTI u |11 60 T

0o.94 5509 1501t it LtoN
" 1000 0

10j 50 200 5COO
20 100 500 2000 10,000

Ratic of half wavelength
to conductor diameter
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each case. The ratio of physical length to electrical length is K, which
leads to the end-effect corrected equation relating the length of the
dipole to the radiating harmonics:

A L-K-1 (25)

This yields fundamental harmonics at 124 MHz for the 114.3-cm di-
pole, and 85 MHz for the 166.4-cm dipole. The radiating harmonics
within the band of the ARL UWB SAR for the 114.3-cm dipole are
124, 372, 620, and 868 MHz; similarly, the 166.4-cm dipole's radiat-
ing harmonics are 85, 255, 415, 585, 745, and 905 MHz.

As described in section 2.3.2, the resonant response should be pre-
ceded by a forced response, which is a reflection of the incident
pulse caused by the pulse driving currents on the surface of the ob-
ject. The amplitude of this response will be determined by those fac-
tors affecting the RCS of the object-phase, aspect angle, and polar-
ization state. Once the incident pulse has transitioned past the
surface of the object, the response will be characterized by the un-
forced decay of the natural resonances. Although the transmitted
pulse is generally treated as having very fast decay characteristics,
observation of the actual pulse radiated from the ARL UWB SAR
antenna indicates that remnants of the static discharge continue to
radiate from the antenna for a period lasting 15 to 20 times the dura-
tion of the initial pulse. These radiated remnants can drive currents
on the surface of the object, continuing to excite specific harmonic
modes, which may cause the excited modes to exhibit
nonexponential decay behavior. This type of behavior has been ob-
served in some of the data, and is discussed in section 3.2.2.

3.2 Empirical Assessments

3.2.1 Description of UWB SAR Imageny

Five different images were analyzed in the coiirse of the research,
each image representing a single polarization state. Transmit and re-
ceive polarizations are inclined 45° to the slant plane, as defined by
their electrical planes. Since twe rooftop aperture runs nearly due
west-east, polarization states are designated as "west" (electrical
plane inclined upward to the west) and "east" (E-plane upward
east). Transmit polarization is stated first in the nomenclature; thus,
an east-transmit, west-receive polarization channel is designated
"EW."/

The images are composed of 8 megapixels each-2K pixels in azi-

muth and 4K pixels in range-projected onto a Cartesian image
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grid. The raw data are purely real; we obtain intensity plots by per-
forming a Hilbert transform on the real data to generate a quadra-
ture image, and calculating the scalar magnitude of the in-phase and
quadrature images. This step effectively eliminates target resonant
responses, so intensity plots are used only for display purposes; all
target processing is performed on the bipolar SAR amplitude map.

Each image analyzed contains from one to four dipoles. Dipole-
orientation designations follow a convention similar to that used for
the polarization states: a dipole oriented upward to the east is re-
ferred to as an "east" dipole; those oriented upward to the west are
"west" dipoles. "Vertical" and "horizontal" dipole orientations are
referenced to the ground plane.

3.2.1.1 Image 1: Run 1, WW Porarization, Four Targets

The aperture run for the first image was made during the period
from 11 to 20 January 1993. (About 80 hours are required to collect a
single complete aperture of data.) Vegetation was devoid of foliage.
The polarization of the analyzed image is west transmit, west re-
ceive. There are four 114.3-cm dipoles in the image, one each at the
orientations of vertical (A), east (B), west (C), and horizontal (D),
where the letters in parentheses denotc Iccations of the targets in fig.
ure 1. This provides one dipole (west) in the polarization plane (i.e.,
copolarized), two dipoles inclined 450 to the plane (vertical and hori-
zontal), and one dipole (east) orthogonal to the plane of polarization
(cross-polarized). The dipoles were placed at slant ranges of 152.3 to
155.0 m, about 6 m in front of the tree line in range.

3.2.1.2 Image 2: Run 1, EW Polarization, Four Targets

Image 2 is identical to Image 1, except that cross-polarized data (east
transmit, west receive) are employed. For dipole targets oriented 45*
to the ground plane (east/west dipole), the signatures should be the
result of single-bounce multipath (the bounce will occur on either
the outbound or reflected pulse, depending on the orientation of the
dipole), and should thus be substantially attenuated compared to
similar direct-path signatures.

3.2.1.3 Image 3: Run 4, WW Polarization, One Target

The aperture run for the third image was made during the period
from 20 to 28 April 1993. Vegetation was about 50-percent foliated.
The image polarization is west transmit, west receive. There is one
114.3-cm dipole in the image (position E in fig. 1), oriented up east
(cross-polarized), about 6 m forward of the tree line.
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3.2.1.4 Image 4: Run 6, WW Polarization, Two Targets

The aperture run for this image was made during the period from 5
to 11 May 1993. Vegetation was about 70-percent foliated. The image
polarization is west transmit, west receive. There is one 114.3-cm di-
pole in the image (position E in fig. 1), oriented up east (cross-polar-
ized), about 6 m forward of the tree line.

3.2.1.5 Image 5: Run 7, WW Polarization, Two Targets

The aperture run for the fifth image was made during the period
from 29 June to 12 July 1993. Vegetation was in full foliage. The im-
age polarization is west transmit, west receive. In the image, there is
one 166.4-cm dipole (position F) and one 114.3-cm dipole (position
G), both oriented up east (cross-polarized). Both targets were placed
in the foliage; the 166.4-cm dipole was placed about 9.1 m behind the
tree line, and the 114.3-cm dipole was placed about 11.3 m behind
the tree line. Both targets were entirely obscured by foliage.

3.2.2 Observations of Target Ringdowns

As discussed in section 3.1, radiating harmonics for the 114.3-cm di-
pole are expected to be seen at 124, 372, 620, and 868 MHz. Analysis
of the west dipole in the WW-polarized data of Image 1 (fig. 17)--a
combination that should yield the best response-reveals the pres-
ence of all four harmonic components, with very close agreement to
prediction. The magnitude of each component scales roughly in-
versely with wavelength. The horizontal dipole exhibits similar
characteristics. In these two cases, observation coincides well with
prediction (sect. 2.3.2), although there are minor deviations; these
are discussed in section 3.2.3.

Figure 17. Range-line 4000
cut of west dipole in
Image 1.

0

I-2000
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Relative range bin number (range line 1123, pixel 1130)
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The primary (i.e., lowest frequency) components generally d'is-
played approximately four "good" oscillations before the harmonic
decayed into the noise.

The vertical and east dipoles do not correlate as well with the pre-
dicted response; deviations from the predicted response are pre-
sented in the next r-.ction.

3.2.3 Analyses of Deviations from Prediction

Observation of the data reveals some deviations from the predicted
responses. The following is a summary of the observed deviations
for the 114.3-cm dipole. Since the only data for the 166.4-cm dipole
have the target cross-polarized to the image polarization plane,
these were not used as a baseline for assessment of target
characteristics.

The resonant components for the west (copolarized) and horizontal
(inclined 450 to plane of polarization) dipoles in Image 1 do not im-
mediately reach a maximum amplitude followed by a strict decay,
but require about a half cycle to reach the maximum (followed by
strict decay). This could be attributed to continued coupling of rem-
nants of the radiated pulse (see fig. 2). Another possible explanation
arises from the difference in arrival time of backscattered returns
from points on the targets that are at different ranges from the
antenna [17].

* The 125- and 875-MHz components do not decay as quickly as ex-
pected. This phenomenon is believed to be caused by coupling of ra-
diated-pulse remnants and/or nonlinear frequency-dependent Q-
factors.

* The initial amplitudes of the resonant components of the dipole
were not observed to scale as 1 / n2, but scaled closely to 1 / n (the
875-MHz component scaled more closely to prediction). Some of this
behavior can be attributed to Q-factor variance among the
components.

* The responses of the vertical (45°-inclined) and east (cross-polar-
ized) dipoles are more anomalous; coupling may account for some
of the behavior, as may relative polarization and multipath. (Appar-
ent relative symmetry of the vertical and horizontal dipoles may not
be significant because of multipath effects.)

These effects were taken into account in the target-modeling process
(see sect. 3.2.4).
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3.2.4 Determination of Variables

The variables employed in the target-modeling process for the di-
poles were resonance points (real poles), initial amplitudes and de-
cay rates of the individual resonances, and phase angles for each
resonance. These variables can be categorized into three general
groups: deterministic quantities (those that should follow directly
from prediction), quasi-deterministic quantities (those whose gen-
eral behavior is predictable, but whose specific behaviors may de-
pend upon target characteristics, such as Q-factors of different reso-
nances-these values are determined by observation), and
observation-driven quantities (those for which there are no deter-
ministic or quasi-deterministic predictors--herein referred to as "in-
dependent" variables).

Since there was only one 166.4-cm dipole available in the imagery
processed, it was not considered reasonable to optimize the template
variables to the empirical data for the single target and subsequently
declare a recognition. Hence, the 166.4-cm dipole was employed
solely to establish the baseline performance of a template generated
strictly from prediction, with no optimization for observation of the
actual characteristics. (Additionally, the cross-polar nature of the
target renders it an unreliable measure of the target characteristics
that we would expect to observe in general.)

3.2.4.1 Deterministic Quantities

The quantities that should have the best prediction-observation cor-
relation are the resonant frequencies of the targets (eq (25)). These
are governed solely by the electrical lengths of the objects, and
should not be observed to deviate from prediction more than a small
amount allowable for minor measurement errors and other effects.
These quantities did, in fact, agree very closely with the predicted
values for the 114.3-cm dipole, as shown in table 1.

Table 1. Predicted and actual values of dipole resonances.

Dipole Dipole resonances (MHz)

length Harmonic I Harmonic 2 Harmonic 3 Harmonic 4 Harmonic 5 Harmonic 6
(cm) Pred Ohs Pred Obs Pred Obs Pred Obs Pred Obs Pred Obs

114.3 124 124 372 375 620 630 868 875 - - -

166.4 85 - 225 - 415 - 585 - 745 - 905 -
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3.2.4.2 Quasi-Deterministic Quantities

Initial amplitudes and decay rates of individual components should
follow equation (5), where the initial amplitude is predicted to scale
as 1/n 2 [16], and the rate of decay should be linearly proportional to
frequency of oscillation [3]. Deviations from prediction will be due
to the relative Q-factors of the dipoles at each of the harmonic com-
ponents (Q-factor deviations will largely be determined by imper-
fections in the surfaces of the targets: significant surface irregulari-
ties, inhomogeneity of the constituents, etc), and are expected to be
moderate, at most. Actual data did not follow the inverse-quadratic
prediction exactly; a logarithmic fit to the data in table 2 suggested a
fit closer to n-1-78. Decay rates scaled closely to n2.8 for the 125-, 375-,
and 625-MHz components; the 875-MHz resonance did not follow
this pattern, as shown in table 3. In both cases--amplitude and de-
cay-the values selected in the target-modeling process were based
on the empirical observations.

Table 2. Predicted and actual values of component initial amplitudes (relative to highest
frequency component).

Dipole Dipole resonances (M-z)

length Harmonic 1 Harmonic 2 Harmonic 3 Harmonic 4 Harmonic 5 Harmonic 6
(cm) Pred Obs Pred Obs Pred Obs Pred Obs Pred Obs Pred Obs
114.3 16 12 9 6 4 3.8 1 1 -. . .
166.4 36 - 25 - 16 - 9 - 4 1- -

Table 3. Predicted and actual values of component decay rates (relative to lowest-frequency
component).

Dipole Dipole resonances (MHz)

length Harmonic 1 Harmonic 2 Harmonic 3 Harmonic 4 Harmonic 5 Harmonic 6
(cm) Pred Obs Pred Obs Pred Obs Pred Obs Pred Obs Pred Obs

114.3 1 1 2 7.47 3 19.18 4 7.75 - - -

166.4 1 - 2 - 3 - 4 - 5 - 6 -

3.2.4.3 Independent Variables

There was no resolvable prediction for the relative phase angles of
the individual components; these were determined entirely from
empirical data. Actual phase angles used represent sufficient fits to
the empirical data, but are not optimized to the data. A close-but
sub-optimal-fit to the data requires the detection method to have
some immunity to the relative phase of the components. This is de-
sirable since relative phase is path-length dependent; thus, it is
position-dependent in the image. Although the path lengths and as-
sociated phasor corrections for each target in the image can be calcu-
lated at each resonance point, this requires substantial processing.
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Ideally, we would like the recognition algorithm to perform well, in-
dependent of the wavelength (and, hence, relative phase) of the
component; to achieve this goal, I use one-time, sub-optimal rela-
tive-phase corrections made during construction of the target tem-
plate (no phase corrections were made for the 166.4-cm dipole).
Relative phase angles employed are shown in table 4.

Table 4. Phase angles of resonant components (in degrees).

Dipole Phase angle ()
length
(cm) Harmonic 1 Harmonic 2 Harmonic 3 Harmonic 4 Harmonic 5 Harmonic 6

114.3 -10 180 60 -90 - -

166.4 0 0 0 0 0 0

3.3 Construction of Target Templates

Based on the observations in section 3.2, target templates were con-
structed to provide models of the resonant responses of the dipoles.
Linearity of the resonance effects was assumed in the modeling
process, so the templates were constructed by simple superposition
of the individual component ringdowns. Each component was de-
fined by four parameters: frequency of oscillation, amplitude, damp-
ing factor, and phase. The ringdown for each component was con-
structed at the effective sampling rate of the focused image (3994
MHz) by the use of

Rj[i - A. sin(Gi)e- isin[2L i + '7] (26)

where

.2elsewhere } 2 tous.~(+15,(7

the index n is the component number, and the index i equates to the
pixel position in the ringdown (i.e., the amplitude of the response of
the third harmonic component at pixel position 9 in range is defined
by R3 [91). In both equations, aon is the oscillation frequency of the nth
harmonic component and ws is the effective sampling frequency in
radians; An, ýn, and q.n are, respectively, the initial amplitude, decay
rate, and phase angle for each component. Equation (27) governs the
"growth" factor (the first sine term in eq (26)) during the first half-
cycle of the response; the effect of this term is removed after the first
half-cycle by the definition of Gi in equation (27).
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Using equation (26) to define the individual harmonic components, I
constructed the combined response straightforwardly as a linear
sum of the N components:

Rk,[l - Rj(iJ , k E {target set} .(28)

Figure 18 shows the combined responses (herein referred to as "syn-
thetic ringdowns") for the 114.3- and 166.4-cm dipole. In this figure,
the modeling of the half-cycle growth phenomenon is clearly visible.

3.4 Development of Target-Recognition Methodology

Each image to be processed contains at least one dipole target; the
ringdowns from these dipoles will appear in range pixels "behind"
the targets (see app A). I employ Fourier and multiresolution tech-
niques to extract the spectral information from the resonant signa-
tures; the data obtained can then be correlated with the spectral
characteristics of the target templates, yielding a scalar correlation
coefficient. This approach lends itself to establishment of a single
target-declaration threshold, which-if exceeded-will result in a
(a)

Figure 18. Synthetic o00o
ringdowns: (a) 114.3- 4M ,
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target declaration. This information will not guarantee that the de-
dared target exists at that location-the declaration may be a false
alarm-but it can be passed to another system for further analysis.
Thus, some set of goals and criteria must be established for the per-
formance of the target-recognition processor to be evaluated.

3.4.1 Target-Recognition Criteria

The long-range ATR system envisioned for the UWB system cur-
rently centers on a neural-network-based processor. Since short-
term projections of throughput rates for neural nets are not high
enough to provide realistically fast response times, the ATR archi-
tecture will require a preprocessor to provide target "cues" to the
net, thereby reducing its processing load. The goal of this research is
to provide a preprocessor that will have a very high target-recogni-
tion probability (0.90 or higher), with a relatively low false-a"- --n
rate (0.001 or fewer false alarms per pixel processed). Thus, -,I-
deavor to ensure that the vast majority of real targets in the proc-
essed images are presented to the neural net, while reducing the
throughput requirements of the net by about three orders of
magnitude.

The requirement to recognize a fairly high percentage of targets pre-
sented to the processor is significant: targets at sub-optimal orienta-
tions (i.e., orientations that place key resonators within shadows)
will yield severely attenuated or otherwise modified signatures.
Meeting this criterion requires the recognition processor to exhibit a
high degree of immunity to degradation of the target-signature
characteristics. Since this is not a trivial requirement, I concentrate in
this work on targets at orientations considered sub-optimal (for di-
poles, sub-optimal orientations are those in which the major axis of
the dipole lies outside the image plane of polarization). Optimal ori-
entations were used in the construction of the template for the 114.3-
cm dipole, since the high RCS inherent in those orientations pro-
vides the strongest signal return, and thus the best characterizations
of the target. The goal, however, is for these templates to meet the
recognition requirements, which include declaration of all targets-
at all orientations-in the images.

3.4.2 Spectral-Analysis Approach

The recognition approach is based on transformation of the target
data into the frequency domain, and correlation of the spectral char-
actefristics with those of the "known" target (template).
Thresholding the scalar correlation coefficient provides a compu-
tationally efficient means of determining target declarations.
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The scalar correlation approach also provides a mechanism for de-
tection of targets with very weak signatures: since the method
hinges on finding relative symmetry bethve-,r t.e two sets of spec-
tral coefficients-not on matching their acttal niagnitudes--it fea-
tures considerable immunity to target s;-,nature attenuation. This
obviates the requirement to scale the te p7?],te to the suspected mag-
nitude of the data (as must be done, for example, in FLIR imagery to
account for range-related target scalings, x.,d in radar systems using
pattern-based algorithms, to accommodate modulations in target
intensity).

3.4.2.1 Determination of Analysis Window

For consistency of comparison among the various transform meth-
ods employed, identical-length analysis windows were employed in
all analyses. Since the FFT analysis window length is, for all intents
and purposes, constrained to integer powers of 2, the range of
possible window sizes i vas limited to those values.

Empirical observati.-ins of the data were used to establish the length
of the window. Analysis of the range-line cut from the response of
the west dipole in Image 1 (fig. 19) shows the driven response
(boxed area) with the ringdown commencing shortly thereafter.
(Note that pixel numbers in range-line illustrations indicate relative
positions, not absolute positions, in the range line; bfrthermore, dif-
ferent polarizations of the same image are currently i. ..eegistered, so
their pixel coordinates do not align.) According to prediction, all
components of the ringdown will decay within a similar number of
cycles; thus, the total time required for the response to ring down to
half power will be dictated by the lowest frequency (i.e., longest
wavelength) component. For the 114.3-cm dipole, it is the 125-MHz

Figure 19. Driven 4OO
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component that will determine the decay time-which requires
about 100 pixels before the signal has decayed into the noise.
Employing a 128-point analysis window would thus reduce the S/N
ratio of the transformed data, suggesting that a 64-point window
should provide the best-albeit sub-optimal-performnce (these
points are identified in the ringdown portion of the west-dipole re-
sponse shown in fig. 19). This assumption was also borne out by ex-
periment: the 128-point window performed poorly compared to the
64-point window.

For comparison, the west dipole ringdown and the dipole template
are juxtaposed in figure 20. Note that the two sequences are not
closely correlated (their correlation, in fact, is about 0.62). It will be
shown that an exact match of the template with the data is unneces-

(a)
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sary-the key is that their spectra correlate sufficiently well to
provide adequate detectability of the targets.

3.4.2.2 Analysis Bases Employed

Six analysis bases were evaluated in the course of this research, al-
though only four of them performed sufficiently well to warrant de-
tailed inclusion here. Of the four bases evaluated in detail, two are
Fourier bases (rectangular. and Gaussian-windowed FFTs) and two
are multiresolution bases (the Haar wavelet and the Gaussian basis).
The other two bases-which are not included in the detailed analy-
sis-are the first-order Gaussian derivative and difference-of-
Gaussian multiresolution bases.

Fourier bases. A standard rectangular-windowed FFT was employed
in the Fourier analysis. I also evaluated the Gabor basis (a Gaussian-
weighted FRT), both to reduce rectangular-window-related ringing
and to provide a basis for comparison with the Gaussian multi-
resolution basis.. (Sect. 2.4.2.2 gives a brief discussion of the Gabor
basis.) Target-recognition performance was similar for both the
square-windowed FFT and the Gabor basis, although the Gabor ba-
sis had substantially higher false-alarm rates (despite the fact that
the Gabor basis exhibited greater detectability of the targets, thereby
permitting a higher target-declaration threshold to be established).

The performance characteristics of both bases are summarized and
analyzed in section 3.5; the detailed results are tabulated in appen-
dix C.

Primary multiresolution bases. Unlike Fourier methods, there is a
plethora of multiresolution and wavelet bases available. Although
several bases were investigated, I summarize only two: the Haar
basis,

W,.(t) -W(2•t - k), m a: 0, 0 s k < 2', m, k E Z , (29)

and the Gaussian basis,

W,,(t) - I exp - 2 mO0, Osk<2', mkEZ . (30)

The Haar basis-which provided relatively good performance-is
piecewise continuous; thus, it introduces ringing effects, and does
noc provide very good correlation with the sinusoids being
analyzed.
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The desire for improved performance with sinusoids motivated the
introduction of the Gaussian basis. Although the Gaussian does not
satisfy the requirements to be considered a wavelet basis in the strict
sense (square-integrability and true compact support), it is neverthe-
less employed here for its ability to provide satisfactory correlation
with sinusoids.

Each basis used a 64-point analysis window (referred to as the "pri-
mary window" in multiresolution analysis, since the window sizes
scale in inverse-dyadic style as the analysis scale decreases); the
shortest windows employed were two-point windows for the Haar
and four-point windows for the Gaussian. (The piecewise-constant
Haar basis reduces to two points in a straightforward manner; the
Gaussian does not.) This yields a 64-vector spanning set in the Haar
case, and a 31-vector basis in the Gaussian case.

The Haar basis is illustrated in figures 12 and 13; the Gaussian func-
tion is shown in figure 21.

Other multiresolution bases employed in the analysis. Two other bases
were also employed in the analysis-a first-order Gaussian deriva-
tive (FOGD) function,

W ,k(t) exp[ 2  maO, Osk<2', mkeZ , (31)

and a difference-of-Gaussian (DOG) function,

W110t) . 2z 11 - (2-f - k)'] exp M2" a) 0, m = (32
([I Osk<2"j' m,kEZ . (32)

Although these bases satisfy the square-integrability condition for
wavelet bases, they do not have compact support, nor do they pro-
vide orthogonal projections. (Orthogonality is unnecessary in this
application, since the transform is performed in only one direction.)

Similar to the Gaussian basis, these bases were introduced for their
sinusoidal correlation characteristics. These functions, however, are
difference operators, and correlate well with wideband, impulsive
data. Since the clutter in the UWB SAR imagery has largely impul-
sive characteristics, these bases yielded very high false-alarm rates,
and were not employed in the analysis summarized in section 3.5.

The FOGD a:id DOG basic wavelets are shown in figure 22.
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Figure n1. The
Gaussian basic
wavelet.

Figure 22. Wavelet
basis functions:
(a) first-order
Gaussian derivative
(FOGD), and
(b) difference of
Gaussian (DOG).

(a) (b)

3.4.2.3 Construction of Spectral Templates

I generated the target templates by transforming the synthetic
ringdowns to generate a set of spectral coefficients (the "spectral
template"). The FFT bases each yielded 33 unique complex coeffi-
cients (the other 31 are just conjugate-symmetric projections of the
31 poles that lie entirely in the upper half of the complex plane; see
sect. 2.4.2.2), the Haar basis yielded 64 coefficients, and the Gaussian
basis yielded 31 coefficients; ail values are tabulated in appendix B.

3.4.2.4 The Recognition Process

To provide the best possible characterization of the target-recogni-
tion performance, the processor performed the transforms on every
pixel in the target area; i.e., the 64-point analysis window was
incremented by one pixel for each transformation. The transforms
were perfo-med in range only. Each transform yielded a set of spec-
tral coefficients, which was correlated with the corresponding spec-
tral template to produce a correlation coefficient. This coefficient
characterized the confidence that the target of interest was present in
the transformed data.
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To establish the thresholds employed in the target-declaration proc-
ess, I transformed and characterized the data in Image 1 for each of
the four targets present in the image; these characterizations are
tabulated in appendix C. Because we wish to recognize every target
in the image, the thresholds were derived from the minimum corre-
lation values across the target set. The results of this process are
summarized in section 3.5.

Hardware and software resources employed. The hardware platform
employed in the analysis was a Sun Corporation VME-based Sparc 1
processor. Four CSPI i860-based vector processors were also em-
ployed at later stages in the analysis.
Most of the code was written in the PV-WAVE command language
(Precision Visuals, Inc.). Software for CSPI processors was written in

the "C" programming language.

Processing-time considerations. Each image analyzed contains 8
megapixels on a Cartesian grid, with 4096 pixels in range and 2048
pixels in azimuth. To perform a 64-point transform at every pixel in
range (4032 transformations) for a single range line requires roughly
3 minutes of processing time on an unloaded processor, hence, 2048
range lines would require 102.4 hours (4.25 days) of processing time.
Considering the 80 hours required to collect an aperture, this can
still be considered near-real time; it is, however, unreasonable from
a practical standpoint. Processing-time considerations thus moti-
vated the development of some form of target cueing to reduce the
number of transformations required to analyze an image.

Target cueing. The driven response of the target provides an excellent
detection mechanism for provision of target cues to the recognition
processor; this response has a duration of about 20 pixels for a target
of short dimension in range, and precedes the resonant response by
5 to 10 pixels (see boxed area in fig. 19). The magnitude of the re-
sponse is not necessarily greater than that of the ringdown; in fact, it
may be substantially less-an interesting characteristic discussed
elsewhere [15]. Nevertheless, an acceptable target detector can be
employed that uses the driven response of the target to cue the rec-
ognition engine.

Since the topic of this report is the recognition of targets by their
resonant responses, I describe the nature of the detection algorithm
only briefly.

To avoid a speed penalty, I used only a single transform method in
the detection stage. Between the Haar basis and the Fourier ba.,is, it
was found that a 16-point Haar wavelet provided better detection
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performance in terms of reliability in recognizing the presence of
targets and in rejecting false cues. The detector provided an average
of 36,000 discrete detections per image, resulting in a substantial de-
crease in processing time. Note that each target will span several
pixels in azimuth, each one providing at least one detection. Thus,
the detections can be clustered into target groupings, representing
about an order of magnitude decrease in detections. This optimiza-
tion, however, was not employed, since the larger number of detec-
tions provided a better statistical characterization of the recognition
algorithm's performance.

The ringdown appears in pixels in range behind the driven re-
sponse; however, the "distance" between the start of the driven re-
sponse and the start of the i4-rgdown is variable, spanning about 15
pixels. Thus, the recognition algorithm spanned 20 pixels in range
(including a 5-pixel safety buffer) following each target cue pro-
vided by the detector. For an average of 36,000 detections per image,
this resulted in about 720,000 transformations being performed for
each transform method employed, or slightly better than an order-
of-magnitude improvement over the full-image-decomposition
approach.

When the Haar-based cueing mechanism was used, the processing
time required to analyze a single image was reduced from 102 hours
to about 7 hours (per transform method employed)-a substantial
improvement.

It is worth noting that there was no significant correlation between
the detection technique employed (Fourier, Haar, and Gauss) and
the recognition performance among the transform methods; that is,
using Fourier detections did not improve the performance of the
Fourier-based recognizer. (In fact, the Fourier false-alarm rate
tended to increase slightly when the Fourier-based detector was
used, with no corresponding increase in recognition performance.)

3.4.2.5 Basis Pruning

Since the ringdown components appear in only a few of the spectral
coefficients for each transform method, not all the coefficients are re-
quired for the target to be detected. This motivates some "pruning"
of the basis to remove those coefficients that do not contribute to the
recognition process. Care must be taken in this process, however,
since random-noise correlations begin to increase the false-alarm
rate as spectral coefficients are removed from the correlation proc-
ess. This suggests that there must exist some optimal set of basis
functions; no claim is made that the basis pruning employed here
was optimal. It did, however, increase recognition performance and
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decrease false-alarm rates for each transform method. Decreases in
false-alarm rates of pruned bases resulted from the increased decla.
ration thresholds permitted by the semi-optimized transforms.

Note that pruning de-orthogonalizes the basis (the Gaussian basis,
as discussed in sect. 3.42.2, is not an orthogonal basis from the out-
set), which limits the reconstructability of the original data. Since the
transform is performed in only one direction for the purpose of tar-
get recognition, reconstructability of the original data is not an issue.
(Additionally, the transforms were not performed in place, so the
original data were not lost in the process.)

The method of pruning was straightforward: basis functions that re-
suited in a significant (greater than I percent) decrease in correlation
performance were removed from the basis. This process is briefly
described for each basis; spectral coefficients are tabulated in appen-
dixB.

The Fourier basis was especially sensitive to increased false alarms
with basis pruning; in fact, only one of the 33 complex coefficients
was removed from the basis. Removal of other coefficients did not
result in a significant increase in detectability, but did significantly
increase false-alarm rates. The basis removed corresponded to the
highest frequency subband; at the effective sampling rate (3994
GHz), this is about a 2-GHz basis function. Since there are no data
above approximately 1 GHz, this subband is clearly unnecessary.
(By the same reasoning, about half of the basis functions could be
eliminated. While any one of them provided roughly the same im-
provement in performance, removing more than one resulted in a
steadily increasing false-alarm rate. The one selected for removal
had the most significant impact on the recognition performance.)

The Gabor basis was pruned in the same manner as the square-
windowed FFT basis, permitting direct performance comparisons
between the two bases. As suggested by the analyses in sections
3.5.1 and 3.5.2, the Gabor basis may lend itself to more extensive
pruning than the rectangular-windowed FFT because of the
Gaussian-window suppression of the high-frequency ringing.

The Haar basis exhibited the poorest performance for a complete ba-
sis (see table 5, sect. 3.5.1), and also tolerated the most extensive
pruning. The basis was reduced from 64 to 36 vectors, and even re-
ductions down to 26 vectors did not yield intolerable false-alarm
performance. The basis functions removed were generally those that
transformed "empty" subbands (those without resonances) or trans-
formed ringdown components before initiation or after they had de-
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cayed into noise. The pruned basis yielded greater target-recogni-
tion performance with substantially decreased false-alarm rates.

The Gaussian basis exhibited the best full-basis performance, and
hence benefited from only minimal pruning. Similar to the Fourier
case, the Gaussian basis was more sensitive to increases in false-
alarm rates as more basis vectors were removed. Only two vectors
were removed from the Gaussian basis, corresponding to scale/
translation combinations in which there were no ringdown contri-
butions.

3.5 Performance Summary

A summary and analysis of the recognition performance are pro-
vided here; detailed results are tabulated in appendix C.

I ran an initial transform on Image 1 using complete bases to estab-
lish baseline performance of the transform methods. The bases were
then pruned to semi-optimal states; the pruned bases were em-
ployed in all subsequent analyses.

3.5.1 Image 1: Run 1, WWPolarization (Complete Bases)

The baseline transform was performed on Image 1, since it is a
copolarized image containing all four dipole orientations. Figure 23
is an image ch i . containing all four dipoles, identified by the boxes.
The dipoles -,e enlarged to show greater detail in figure 24; the reso-
nant ringdown is clearly visible in range pixels behind the centroid
of the west dipole's driven response (at the bottom of fig. 24c). Also
notable is the weak response from the east (cross-polarized) dipole;
the great majority of brighter pixels in this image chip are clutter
cells. This is also clear from examination of the range profiles (fig.
25).

The first four data columns in table 5 show the correlation perform-
ance of the bases; note that the Haaf basis exhibited very poor
target-recognition performance in this case. Based on these data,

Figure 23. Run 1, WW image chip, showing dipole ringdowns (from L to R: vertical, east, west, and
horizontal d'.poles). Bright area at top center of image is a comer reflector (40 dBsm at 1 GHz).
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Figure 24. Enlarged
image chips, Image I
dipoles: (a) vertical,
(b) east, (c) west, and
(d) horizontal.
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Figure 25. Range profiless, Image 1: (a) vertical dipole, (b) east dipole, (c) west dipole, and
(d) horizontal dipole.
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Table S. Recognition Target correlation coefficients by
performance, Image 1, dipole orientation
complete bases. Transform- Thresh- No. false

method Vertical East West Horizontal old alarms

FFT 0.592 0.514 0.719 0.811 050 8,855
Gabor 0.629 0.610 0.825 0.887 0.60 51,636
Haar 0.348 0304 0357 0371 030 63,527
Gaussian 0.872 0.801 0.927 0.912 0.80 1,056

target-declaration thresholds were established, and I ran the trans-
forms on the entire image to obtain false-alarm-rate information;
thresholds and associated false-alarm rates are shown in the last two
columns of the table. Again, the Haar basis performed very poorly.
The Gabor basis also exhibited poor false-alarm performance for the
complete basis. Analysis of the spectral coefficients (app B) reveals
that the high-frequency ringing introduced by the rectangular win-
dow of the FFT is largely suppressed in the Gabor case, as expected;
this suppression, however, yields a higher false-alarm rate because
of the corresponding increase in correlation values driven-in
part-by similar suppression of ringing in the analyzed data. The
FFT performed acceptably in this case, although the false-alarm rate
is slightly higher across the 8-Mpixel image than the goal of 10-3.
The performance of the Gaussian basis was encouraging-for both
target detectability and false-alarm rate-despite the lack of basis
optimization.

3.5.2 Image 1: Run 1, WW Polarization (Pruned Bases)

I ran the analysis once again on Image 1 following the basis-pruning
step, to obtain a comparison with the unpruned bases. Again, the
first four data columns (table 6) summarize the correlation perform-
ance, and the last two columns show the selected false-alarm thresh-
olds and associated false-alarm rates. In both of these cases (Image 1,
unpruned and pruned), the thresholds were established at levels
that ensured recognition of all targets.

Note that the pruned Haar basis has realized a substantial increase
in performance, in terms of both correlation performance (which al-

Table 6. Recogrntion
performance, Image 1, Target correlation coefficients by
pruned bases. Transform dipole orientation Thresh- No. false

method Vertical East West Horizontal old alarms

FFT 0.658 0.606 0.808 0.922 0.60 8,709
Gabor 0.699 0.668 0.947 0.985 0.66 18,131
Haar 0.759 0.627 0.853 0.921 0.60 4,845
Gaussian 0.904 0.840 0.915 0.977 0.80 1,146
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lowed the declaration threshold to be raised significantly) and false-
alarm rate. Performance improvements were also realized for both
the Fourier and Gaussian bases. In the Gabor case, the false-alarm
rate remained high, despite the increase in the target-declaration
threshold; improved basis pruning may yield increased perform-
ance for this basis.

3.5.3 Image 2: Run 1, EW Polarization

Image 2 is the east-west-polarized image from the first aperture run.
In this and subsequent analyses, I held the stated target-declaration
thresholds constant to provide a basis for performance comparisons
among the images analyzed (I show constant declaration thresholds
in bold to underscore this fact). In this case, the Gaussian
multiresolution basis and both of the Fourier bases failed to recog-
nize the vertical target (table 7). One option in this event was to
lower the target-declaration threshold, and re-evaluate the perform-
ance. This option, however, resulted in an unacceptably high num-
ber of false alarms in the analysis; thus, accepting the target "misses"
was considered the better option.

The Gabor basis exhibited a substantially higher false-alarm rate for
this image; there is currently no explanation for this behavior.

Not surprisingly, the recognition performance for the east dipole
improved significantly across all bases for this image polarization;
analysis of the range-line profile for the east dipole indicates a sub-
stantially "cleaner" signature for this image. Range profiles for all
targets in Image 2 are shown in figure 26.

Table 7. Recognition -
performance, Image 2. Target correlation coefficients byTransform dipole orientation Thresh. No. false

method Vertical East West Horizontal old alarms

iFT X 0.698 0.784 0.845 0.60 8,020
Gabor X 0.822 0.889 0.894 0.66 35,748
Haar 0.663 0.728 0.810 0.812 0.60 3,973
Gaussian X 0.863 0.939 0.925 0.80 1,172
X = not recognized.
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Figure 26. Range profiles, Image 2. (a) vertical dipole, (b) east dipole, (c) west dipole, and
(d) horizontal dipole.

3.5.4 Image 3: Run 4, WW Polarization

Image 3 is the west-west polarization state from the fourth aperture
run. One target is present in the image, oriented up east (cross-polar-
ized to image polarization plane); its range profile is shown in figure
27. In this image, the Haar wavelet failed to recognize the target
(table 8); similar to the previous case, an unacceptably high number
of false alarms resulted when the target-declaration threshold was
decreased to the point at which the target was admitted.

3.5.5 Image 4: Run 6, WW Polarization

Image 4 is the west-west polarization state from the sixth aperture
run. One target is present in the image, oriented up east; the range
profile for this target is shown in figure 28. Once again, the Fourier
bases failed to recognize the target (table 9). Haar and Gaussian
bases displayed acceptable performance, although false alarms have
increased in this image (possibly due to the presence of a greater
number of unrelated targets in the image).
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Figure 27. Range 1500

profile, east dipole,
Image 3. 1000
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Table B. Recognition Target correlation No.
performance, Image 3. Transform coefficient for Threshold false

method east d-. ,ole alarms

FFT 0.620 0.60 5,182
Gabor 0.863 0.66 12,068
Haar X 0.60 2,099
Gaussian 0.925 0.80 503

X a not recognized.

Figure 28. Range 1500 -

profile, east dipole,
Image 4.

1000F!o F
0 20 40 60 80

Relatie range bin number (range line 1525, pixel 1172)

Table 9. Recognition I arget correlation No.
periorm, :e, Image 4. Transform coefficient for Thr- Id false

method east dipole alarms

FFT X 0.60 13,019
Gabor X 0.66 29,101
Haar 0.668 0.60 7,054
Gaussian 0.846 0.80 2,601
X = not reco~gnized.
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3.5.6 Image 5: Run 7, WW Polarization

This image is the west-west polarizatio," state from the seventh aper-
ture run. Two targets are present in the image, one 114.3- and one
166.4-cm dipole, both oriented up east and embedded in foliage.
Range profiles for each target are shown in figure 29. Table 10 sum-
marizes the performance for the 114.3-cm dipole, and table 11 sum-
marizes the 166.4-cm dipole results.

The 166.4-cm dipole was successfully recognized wher unpruned
(complete) bases were used with a template constructed directly
from prediction, and no modifications were made to account for de-
viations in the data. Of course, the term "successfully" is being used
somewhat loosely here, since the target thresholds were established
at their absolute maximum values-solely to provide at least one
target recognition in each case. The "success" of the method is based

(a) loow. (b) Wi2 o
& Wo &i

S-100

0 -30

-10001 ------- 400
0 20 40 60 80 0 20 40 60 so

Relative range bin number (range line 735, pixel 1415) Relative range bin number (range line 1540, pixel 1416)

Figure 29. Range profiles, Image 5: (a) 166.4-cm dipole and (b) 114.3-cm dipole.

Table 10. Recognition
performance, Image 5, Target correlation No.
114.3-cm dipole. Transform coefficient for Threshold false

method east dipole alarms
FFT 0.603 0.60 2,964
Gabor 0.735 0.66 10,627
Haar 0.688 0.60 1,424
Gaussian 0.811 0.80 516

Table 11. Recognition
performance, Image 5, Target correlation No.
166.4-cm dipole. Transform coefficient for Threshold false

method east dipole alarms
FFT 0.573 0.57 16,280
Gabor 0.665 0.66 53,273
Haar 0..65 0.56 2,072
Gaussian 0.849 0.84 5,265
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on the fact that this baseline evaluation provided results comparable
to the baseline (unpruned basis) example for the up-east 114.3-cm
dipole in Image 1 (table 5)-the Haar basis, in fact, provided sub-
stantially better performance in this baseline analysis. The Gaussian
basis performed well, although it did yield a relatively high false-
alarm rate; basis pruning may improve the false-alarm statistics. The
Fourier bases demonstrated the poorest performance, with a false-
alarm rate substantially higher for the rectangular-windowed FFT
than that observed for the 114.3-cm target. The Gabor basis exhibited
a complete-basis false-alarm rate similar to that demonstrated in the
114.3-cm-dipole case.

The combination of basis pruning and moderate template optimiza-
tion should provide performance similar to that observed for the
114.3-cm dipole. For the Gabor basis, however, more optimization
may be required before the false-alarm rate can be reduced to an ac-
ceptable level.

Note that the foliage-induced signal attenuation for the 114.3-cm di-
pole did not result in a significant degradation in the detectability of
the target (table 10). In this example, the low operating band of the
UWB radar provided penetration into the foliage with relatively
moderate attenuation (about 19 dB); furthermore, the spectral-
correlation scheme provided satisfactory target-recognition
performance for the foliage-attenuated ringdown, as desired.

3.6 Performance Analysis

The goals of the analysis were to provide a recognition probability of
0.90 or better, with a false-alarm rate of 0.001 per pixel processed: by
this standard, the Gaussian basis certainly provided the best per-
formance of the bases considered in this work (table 12). Both the
Haar and the Gaussian bases met the recognition goal of 90 percent;
the Fourier bases each fell short of the goal by a single target
recognition.

False-alarm rates were also relatively low for all bases except the
Gabor wavelet: since 20 pixels were processed for every target detec-

Table 12. Performance
summary. Transform Probability of No. false alarms per pixel

method recognition Cues only Entire image

Goal 0.90 - 10-3
FFT 0.82 11 x 10,3 0.4 x 10-3
Gabor 0.82 146 x 10-3 13 x 10-3
Haar 0.91 5 x 10-3 0.2 x 10-
Gaussian 0.91 2 x 10-3 0.07 x 10-3
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tion, the goal is almost met when only recognition processing is con-
sidered. Since the detection algorithm processed every pixel in the
image and provided cues to the recognition engine, we can summa-
rize the performance of the two-stage processor as shown in the last
column of table 12. These figures easily surpass the goal of 0.001
false alarms per pixel processed for the rectangular-windowed FFT
and both multiresolution bases.

The Gabor basis demonstrated subs.-rntially higher false-alarm rates
than the other bases. The symmetrical Gaussian weighting function
employed by the Gabor basis is suppressing the early portion of the
resonant signature, where the ringdown components exhibit their
highest amplitudes; this may adversely affect the recognition per-
formance of the Gabor basis, rnsulting in an artificially low target-
declaration threshold and a correspondingly higher false-alarm rate.
This suggests that a nonsymmetrical tapered window-with a decay
similar to that observed for the target ringdown-may yield im-
proved performance.

Recognition performance was similar between the two Fourier bases
studied, leavingý false-alarm rate as the deciding measure; by this
metric, the rectangular-windowed FFT is clearly superior to the
Gabor basis, although neither Fourier basis performed as well as the
multiresolution bases in either false-alarm rates or recognition
capabilities.

Inspection of the individual false alarms indicates that they usually
occur in neighborhoods in the images, suggesting that they are gen-
erally being triggered by objects in the images and not by random
noise. This is somewhat to be expected, based on the structural sim-
plicity of the target; most objects of similar dimension in the imagery
will have closely correlated spectral characteristics, thereby trigger-
ing false alarms. Further reductions in false-alarm rates should be
realized for more structurally (hence, spectrally) complex objects--a
suggestion that has been proposed in the literature [11,12].

Computational order of the al - -srithm is a key element in any target-
recognition scheme. Since c trisons are being made across trins-
form methods, the analysis will be limited to their respective com-
putational requirements. The FFT is well established at a
computational order of N logzN; the Gabor basis, which requires an
additional N-order multiply to window the data before the FFT is
performed, also has an N logzN computational order. The Haar ba-
sis, which realizes a straightforward butterfly decomposition similar
to that of the FFT, can be reduced to a, omputational order linear in
N [39]; thus, the Haar basis outperforms the FFT in both target
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recognition and computational complexity. The Gaussian basis used
fast convolution, which yields a computational order of N2-the
highest of the three. Optimizations similar to the Haar case may be
possible; none has been found at this time.

A key point regarding computational order with respect to pruned
bases is that the multiresolution decompositions (Haar and Gauss-
ian bases) do not require computation of the spectral coefficients
eliminated from the analysis; the FFT, for all intents and purposes,
does require a complete projection-the unused coefficients are
merely discarded. Although algorithm-pruning methods exist, they
are generally difficult to implement, and often result in greater proc-
essing time than is required by optimized signal-processing hard-
ware.

A final note on computational requirements: porting the detection
and recognition algorithms from PV-WAVE to jour i860-based par-
allel vector processors reduced the single-transform, single-image
processing time from 7 hours to about 80 seconds (excluding I/O
time). Thus, we can conclude that Fourier- and multiresolution-
transform-based target recognition methods are potentially viable
schemes for real-time ATR applications.

3.7 Conclusions

One is cautioned against drawing too many conclusions from the
limited data presented here; although the results are compared
against the performance goals for the analysis, true statistical signifi-
cance can be achieved only with a substantially larger data set. Nev-
ertheless, for the data set analyzed in the course of this research,
both the Haar wavelet and the Caussian multiresolution basis pro-
vided target-recognition and false-alarm p-rformance superior to
the Fourier bases, with the Gaussian clearly outperformning the Haar
in terms of false-alarm rate. The Haar basis remains attractive from a
computational standpoint, however.

Regardless of whether the driving consideration is false-alarm rate
or inherent computational order (they both, of course, equate to
computational order), the multiresolution bases presented in this re-
search have provided target-recognition performance superior to
that of the Fourier transform for detection of wideband resonance
effects in UWB SAR imagery-including those frcm targets embed-
ded in foliage.
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3.8 Recommendations for Continued Study

This research provides a point of departure for analysis of wideband
resonances through application of linear transform methods; it is not
intended to be a comprehensive treatment of the subject. Many re-
lated topic areas can benefit from further investigation, some of
which are listed below:

Section 3.4.2.5 suggests that there exists some optimal method of ba-
sis pruning; identification of such a method could substantially in-
crease the performance of the bases employed in the analysis.

Other multiresolution bases should be investigated. Although those
employed in this work provided relatively good performance, there
is, of course, no guarantee that other bases will not perform better.

A simple correlation coefficient was calculated in the evaluation of
the recognition confidence; other algorithms (such as mean-squared
distance) may provide better performance and/or a lower computa-
tional load.

Better target modeling is always desirable, and will certainly be re-
quired if the methods presented here are applied to recognition of
more complex targets.

Polar-formatted imagery should improve the performance of all rec-
ognition methods and bases investigated. The imagery analyzed in
this research was projected onto a Cartesian grid-this results in a
geometry-induced defocusing of the target ringdowns, since the
"natural" projection grid for SAR data is polar.

(To see the effect of the Cartesian projection, consider that the target
ringdown will occur in pixels directly "behind" the target as viewed
from each aperture position. Thus, as the aperture is traversed, these
ringdowns defocus behind the target. This effect is exacerbated in
the near field, which is the mode in which the ARL UWB SAR is
operating.)

A potentially viable method for recognition of targets in UWB SAR
imagery has been presented; continued investigation into these and
other areas will certainly continue to improve the performance of
the target-recognition methods presented in this report.
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A-1. Conventional SAR Image Formation

A-1.1 General Range/Doppler Processing

Pulse compression (for increased range resolution) and synthetic-
aperture generation (for increased azimuth resolution) are indepen-
dent processes; that is, a synthetic-aperture radar (SAR) uses the
same pulse-ranging technique as a real-aperture radar, yielding a
deramped bandwidth in which range is a function of frequency.
Equi-frequency points map into equi-range points (which are con-
centric circles centered at the radar) through an inverse Fourier
transform.

Real-aperture systems are resolution-limited in azimuth by the
beamwidth of the radar antenna (other factors being assumed con-
stant). Synthetic-aperture systems overcome this limitation through
the Doppler beam-sharpening concept: relative motion of the radar
with respect to the target provides a Doppler signature, which can
be coherently processed so that the main antenna beam is effectively
split into multiple narrower ("sharper") beams. Typically, the radar
is placed on an airborne platform, with the physical beam oriented
90* to the velocity vector of the vehicle (some applications, such as
missile homing systems, use orientations-" squints"-at angles
other than 900). As the radar traverses the field of view, stationary
objects within the field will exhibit strictly decreasing Doppler shifts
as they "move" through the field of view from front to rear. The in-
tersection of the conical equi-Doppler surfaces with the image plane
yields hyperbolas of equal Doppler ("isodops") in the image plane.
Thus, Doppler-shift frequencies induced by the motion of the radar
platform map into angular position along isodops; similar to the
pulse-ranging case, the image generated by this mapping can easily
be formed through an inverse Fourier transform.

Since position in both range and azimuth can be resolved in a
straightforward manner through inverse fast Fourier transforms
(FFT's), the two-dimensional (2-D) inverse FFT (IFFT) has ofter been
the preferred method of SAR image formation. The 2-D IFFT ap-
proach, however, has limitations that can make it undesirable in cer-
tain applications. Ultra-wide bandwidths render interpretation of
coherency and phase meaningless in many instances, while near-
field phenomena require substantial modifications to Fourier-based
aperture functions. For example, the Doppler paradigm, while use-
ful for understanding the synthetic-aperture focusing operation in
narrowhand applications, breaks down in the wide band. Doppler
shift-defined as 2v/ A for a platform moving at velocity v-is help-
ful in describing the beam-sharpening concept when X varies by a
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small percentage, but fails direct interpretation in the wide band,
where . cart vary by 10 to 1 or more. Thus, to fully comprehend the
ultra-wideband (UWB) SAR image-formation process where neither
bandwidth nor geometry is restricted, it is useful to view the syn-
thetic aperture as a coherent linear array of N transmitter/receiv-
ers.1 The pitfalls of Fourier-based image formation are straightfor-
wardly presented in the antenna-array conceptualization.

A-1.2 Effects of Unconstrained Bandwidth and Geometry on
SAR Image Formation

Synthetic-aperture image formation can be viewed as a "beam-form-
ing" process, whereby backscattered signals are coherently added to
form antenna beams in the direction from which the scattering oc-
curred. Each aperture position, or synthetic-aperture sampling
point, is viewed as a discrete physical antenna, in which the contri-
butions from each antenna add coherently with the rest of the array;
the "boresight" of the array will be defined as a line extending in
range orthogonal to the azimuthal axis of the array. In this represen-
tation, incident planar echoes fromn a distant, boresighted target
reach all points along the aperture simultaneously, exciting all
points of the aperture in phase (fig. A-la); at any instant in time, this
yields a dc voltage across the array. If the target is moved off the
bore.•,ght, backscattered returns will excite the elements of the array
out of phase, producinb a sinusoidal response across the array (fig.
A-lb). The oscillation rate along the aperture increases as the target
moves farther off the boresight (fig. A-ic), yielding azimuth position

Figure A-1. Fourier
beam forming:
(a) backscattered
wavefronts from a
boresighted target;
(b), (c) wavefronts z I I z
fri Fffboresight 000000000000 T 0 0
ta r g e ts .

1 C

(a) (b) (c)

1 1. W. McCokle, "Focusing of Synthetic Aperture Ultra-Wideband Data," IE.E International Conference on

Systems Engineering (August 1991), p 2.
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as a function of oscillation frequency, in a manner similar to the
Doppler case.

A-1.1.1 Bandwidth-Related Aliasing Effects

The mapping from oscillation frequency to azimuth position is
straightforward in the narrow band. If we now remove bandwidth
constraints, we find that-for identical azimuth positions---the fre-
quency of oscillation is no longer strictly a one-to-one mapping in
azimuth, but is also a function of wavelength (fig. A-2). This intro-
duces ambiguities into the mapping function that-if not accounted
for-will yield a poorly focused image, an effect that is exacerbated
as the relative bandwidth increases. The solution to this problem
requires dividing the system bandwidth into narrower subbands;
narrowband approximations can then be employed to form multiple
beams at each aperture position, and the wideband image can be
constructed through superposition of each of the narrowband im-
ages. Superposition of the images requires that the beams formed for
each subband have the same beamwidth; since beamwidth is a func-
tion of wavelength and aperture size, forming equi-angle beams re-
quires that the effective aperture length be modified for each
subband. Since the sampling rate along the aperture must remain
constant, the result is substantial oversampling of the aperture--ob-
viously, a very undesirable effect. Additionally, this method is
computationally intensive.

A-1.1.2 Near-Field Effects

If we now move the target into the near field, we find that bore-
sighted target returns no longer excite the array elements in phase,
because of the curvature of the wavefront (fig. A-3a). We can com-
pensate for this phenomenon by application of polar formatting,
which effectively "curves" the aperture to match that of the wave-
front, thereby simulating a planar return and causing the array ele-

Figure A-2. Azimuth
aliasing in wide band:
(a) correct azimuth

position at frequency
I (fJ); (b) incorrect
position calculated
for f2. f".

(a) (b)

69



Appendix A

ments to once again be excited in phase (fig. A-3b). We can accom-
plish this by time-shifting the target returns at each aperture point so
that the aperture behaves as if it were curved, with the target posi-
tioned at the center of curvature;1 the result is a dc value across the
aperture at any instant in time. Unfortunately, this solution focuses
the image only at the center of curvature, and begins to defocus is
range and azimuth angle diverge from that point. To see this, con-
sider the near-field corrected aperture of figure A-3b; now, an off-
boresight target will excite a sinusoidal response across the array
(fig. A-3c). One solution to this problem is to calculate the polar-
format aperture corrections at every point in the image; for most ap-
plications, this approach is computationally prohibitive. Another so-
lution requires that a specified amount of defocusing be accepted in
the image, and aperture corrections be made for "patches" in the
image. In this scheme, each patch is perfectly focused at the center,
and begins to defocus in range and azimuth toward the edges of the
patch. The resultant image is thus a mosaic of imperfectly focused
patches, but this method is much less computationally intensive
than the method of computing aperture corrections at each point in
the image.

The combination of wideband aliasing and polar formatting effects
in UWB near-field SAR restricts Fourier-based image formation to
very small patches in the image, if reasonably high image quality is
desired.1 Similar problems, such as range walk and wavefront cur-
vature, also serve to limit the efficacy of Fourier techniques in near-
field applications. Overall, Fourier techniques require substantial
processing to form UWB images in the near field; thus, some form of
image formation is desired that uses the entire signal bandwidth
and aperture simultaneously, while still preserving target resonance
effects. One method of forming synthetic-aperture images in uncon-
strained bandwidth/geometry scenarios is the "backprojection"

Figure A-3. Polar
formatting in near
field: (a) uncorrected
aperture for bore-
sighted target;
(b) corrected aperture
for boresighted target; 00
and (c) uncorrected
aperture for off-
boresight target.

(a) (b) (c)

IL. W. McCoikle, "Focusing of Synthetic Ap, i e Ultra-Wideband Data," IEEE international Conference on Sys-
hIns Engineering (August 1991), p 2.
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method (also known as the "summation" method), a technique com-
monly employed in computerized tomography (CT) for medical
imaging. I present an adaptation of the backprojection image-
formation method to the SAR mode.

A-2. Backprojection of UWB SAR Imagery

The treatment of the SAR-mode backprojection algorithm presented
in this section is adapted from McCorkle and Nguyen.2 Analogs to
CT are from Herman.3 The treatment here is brief;, more detailed de-
scriptions can be found in the works cited.

The backprojection algorithm employed in computerized tomogra-
phy involves addition of all the ray values (the received signals) of
all the rays (the transmitted signals) passing through a point (where
the point contributes an attenuation factor to the transmitted signal).
One can generate a 2-D "attenuation map" by repeating this process
for every point in the field of view. This is an inherently near-field
process, as the transmitter and receiver rotate in a coordinated man-
ner around the field of points generating the map.

The SAR mode is slightly different. In SAR, a "reflectivity map" is
generated from the radar echoes of scatterers in the image; thus, the
key values in the process are contributions instead of attenuations.
Replacing the bistatic CT case with a monostatic SAR, we find that
the fundamental concepts remain largely unchanged. If we view a
received radar echo as a ray from the target to the receiver, the scat-
terer-modified CT image.focusing criteria apply equally to SAR:

"* The ray can contribute only to those pixels on the image grid that it
intersects, and no others.

" The contribution of the ray to any pixel that it intersects must be pro-
portional to the ray's signal strength, yj (where yj denotes the signal
strength, y, of the jth ray).

" The contribution of the ray to any pixel that it intersects should be
proportional to the length of the intersection of the ray with the pixel
(i.e., the ray's contribution to the pixel will be proportionally greater
if the ray bisects the pixel than if it grazes the pixel). We define this
intersection length as ri,k,j, where the indices (ik) denote the image-
grid position of the pixel intersected by the rayj.

2;, W. McCorkle and L. Nguyen, Ultra-wide Bandwidtlh Synthetic Aperture Radar Focusing of Dispersive Targets,

Army Research Laboratory, ARL-TR-305 (April 1994).
3G. T. Herman, Image Reconstruction from Projections, Academic Press, Inc., Orlando, FL (1980), chapter 7.
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These criteria are satisfied by

Xý - r,,,,Y,(A-1)

where x1, is the estimate of the absorption (or reflectivity) contribu-
tion from the (ik)th pixel on the image grid. This is a general result
for any data-collection scheme;3 we can now apFly this result to the
SAR-specific mode.

The fundamental backprojection geometry is shown in figure A-4;
note that bearing lines are graduated in k, radial distance (polar
range) is graduated in i, and aperture position is graduated inj. Po-
sitions on the image grid (as well as positions along the aperture) are
referenced to the center of the aperture. The radial distance from the
jth position in the aperture to the (i,k)th position in the image area is
denoted dik,j.

Consider an isotropic scatterer in empty space, with the scatterer at
position (ik) on the image grid; assume that an ideal impulse 6(t) is
broadcast. For the contributions of the backscattered energy to be
maximized, the echo energy from the scatterer nmust be coherently
summed across the aperture. Coherency, however, is defined by
phase angle; hence, the usual (narrowband) interpretation of coher-
ent addition cannot be used, because the ARL UWB SAR is operat-
ing in the wide band. Equation (A-i) provides a frequency-indepen-

0

Figure A-4.4.
Backptojection
image-area geometry.

iw3

d4k,= do,2.-3

Ju-5 j-0 j a5

1300 /030000000
4 -L - ----- 0

3G. T. Herman, Image Reconstnc'ion forom Projections, Academic Press, Inc., Orlando, FL (1980), chapter 7.
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dent means of summing the echoes while preserving coherency
across the band. For the wideband SAR case, the general reflectivity
(or absorption, in CT) term x• in (A-1) is the wideband RCS of the
target, which in this case is the response of the scatterer to the inci-
dent impulse 6(t). The signal-strength and intersection-length terms
in the summation of (A-I) can be replaced with sj(t), the received sig-
nal amplitude (in volts) as a function of time (in seconds, from the
leading edge of the transmitted pulse) at the jth position in the aper-
ture (conceptually equivalent to the magnitude of the jth ray). Thus,
we arrive at the definition of the impulse response of an isotropic
scatterer at position (i,k) on the image grid:

4(t ) - k+ f), t a 0 . (A-2)

This development assumes that the scatterer is isotropic within the
plane of the radar (a vertical dipole, for example). In general, of
course, the impulse response of the target will be a function of aspect
angle (hence, aperture position). In theory, we can accommodate
this effect at each point in the aperture by defining a set of matched
filters F, where each filter Fj, defined for a specific aperture position
j, is matched to the target's impulse response at that aspect angle:

4 W [1 0 s, + t), t a 0 . (A-3)

Obviously, this is not a plausible scenario in realistic applications,
and thus equation (A-2) suffices in the formation of images by
backprojection.

Note that (A-2) can lead to a significant computational requirement
if x,*,(t) is calculated for every point in the aperture; methods have
been devised that substantially reduce this processing load.2

The method of image formation outlined in this section is very gen-
eral, 3 and specifically provides the capability to focus near-field
synthetic-aperture images of dispersive targets with a lower compu-
tational order than is required by Fourier-based image formation
techniques. 2 For these reasons, backprojection is the method of
image formation employed in the ARL UWB SAR instrumentation
system.

21. W. McCorkle and L. Nguyen, Ultra Wide Bandwidth Synthetic Aperture Radar Focusing of Dispersive Targets,
Army Research Laboratory, ARL-TR-305 (April 1994).
3G. T. Herman, Image Reconstruction from Projections, Academic Press, Inc., Orlando, FL (1980), chapter 7.
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The following tables identify the spectral coefficients employed for
each basis in the analysis. Complete bases for the 114.3-cm dipole
are presented in section B-1; pruned bases are in B-2. Complete bases
for the 166.4-cm dipole are presented in section B-3; no pruning was
performed on these bases.

B-1. Complete Bases-114.3-cm Dipole

B-1.1 Fourier Basis

Table B-i. Fourier- Spectral value
basis spectral Coefficient
coeffients: 1143-cm number Real Imaginary
dipole, complete
basis. 0 -318.348 0.00000

1 -214.043 298.915
2 -516.904 -2020.44
3 161.738 174.988
4 75.8170 -44.9084
5 -90.4951 -14.1315
6 44.1456 469.620
7 213.181 -0.282646
8 119.745 -27.0265
9 115.782 17.5103
10 136.794 -91.1553
11 31.5088 -120.760
12 -3.54461 -79.9276
13 -13.4296 -66.9845
14 -87.6190 -26.6449
15 -5.50098 16.0659
16 7.12519 5.17419
17 11.4464 0.998665
18 13.4641 -1.63380
19 14.1127 -3.54582
20 13.7892 -4.74643
21 13.0774 -5.17873
22 12.3533 -5.02351
23 11.8466 -4.56626
24 11.5068 -4.01206
25 11.2853 -3.44555
26 11.1333 -2.86084
27 11.0731 -2.29099
28 11.0778 -1.76971
29 11.0964 -1.32471
30 11.0774 -0.909546
31 11.0312 -0.474152
32 11.0069 0.00000
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B-1.2 Gabor-Wavelet Basis

Table B-2. Gabor- Spectral value
basis spectral Coefficient
coefficients: 1143-cm number Real Imaginary
dipole, completebasis. 0-096 .00

1 62.0448 219.153
2 -72.8635 -324.768
3 46.0480 229.264
4 -1.98621 -71.8854
5 -15.2368 -27.7820
6 -0.729738 64.4972
7 16.3227 -42.5209
8 -10.3434 9.20498
9 -0.798927 3.99802
10 7.99257 -2.50583
11 -5.46995 -325999
12 -1.27268 3.54381
13 7.04654 -2.32910
14 -10.6560 -0.609302
15 6.78050 3.00796
16 -1.69493 -1.65300
17 0.181264 0.340625
18 0.0225425 -0.0237844
19 0.0275464 -0.00541973
20 0.0122311 -0.0131955
21 0.00910687 -0.0100573
22 0.00210452 -0.00484216
23 0.00670195 -0.00210416
24 0.00562000 -0.00108862
25 0.00737572 -0.00284195
26 0.00469398 -0.00115204
27 0.00564241 -0.000623703
28 0.00635052 0.00126266
29 0.00796127 -0.000312805
30 0.0074577 -0.000991821
31 0.00603294 -0.00151062
32 0.00525665 0.00000
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B.1.3 Haar Basis

Table B-3. Har- Coefficient Spectral Coefficient Spectral
wavelet spectral number value number value
coefficients: 114.3-cm
dipole, complete 0 -318.348 32 -40.3743
basis. 1 -412.075 33 424.285

2 1969.31 34 -753.142
3 2730.24 35 -871.667
4 -650.079 36 565207
5 1145.55 37 175.250
6 -1021.26 38 376.486
7 971.844 39 -39.5327
8 -910.263 40 4.33569
9 1115.19 41 226.673

10 1962.04 42 838.519
11 -1396.46 43 591.859
12 -1917.93 44 -203.073
3 178.41 45 -279.472
14 1687.99 46 -487.526
15 -926.336 47 -196.120
16 361.831 48 -306.369
17 -2164.12 49 415.742
18 763.495 50 -599.436
19 400.718 51 -396.019
20 238.206 52 82.9497
21 1649.73 53 242.144
22 -481.098 54 404.953
23 -704.551 55 261.642
24 -753.249 56 358.186
25 -1099.64 57 415.441
26 323354 58 468311
27 674.244 59 306.450
28 797.703 60 -12.2661
2q 830.236 61 -178.096
30 -189.395 62 -323.860
31 -616.250 63 -287.776
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B-1.4 Gaussian Basis

Table B4. Gaussian- Coefficient Spectral Coefficient Spectral
basis spectral number value number value
coefficients: 114.3-cm
dipole, complete 0 -4478.20 16 286.460
basis. 1 1420.85 17 558.907

2 3969.81 18 112.563
3 5065.19 19 103.262
4 -7784.11 20 -724.114
5 7366.77 21 -1050.48
6 -6493.34 22 -458.221
7 -785.665 23 -33.8032
8 1249.36 24 760.483
9 -430.782 25 1015.33
10 -2925.20 26 516.326
11 1091.52 27 10.3358
12 2857.55 28 -683.137
13 -1139.60 29 -918.706
14 -2713.72 30 -530.018
15 -17.7338
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B-2. Pruned Bases-114.3-cm Dipole

B-2.1 Fourier Basis
Table 9-5. Fourier- Spectral value
basis spectral Coefficient
coefficients: 114.3-cm number Real Imaginary
dipole, pruned basis. 0 -318.348 0.00000

1 -214.043 298.915
2 -516.904 -2020.44
3 161.738 174.988
4 75.8170 -44.9084
5 -90.4951 -14.1315
6 44.1456 469.620
7 213.181 --0.282646
8 119.745 -27.0265
9 115.782 -17.5103

10 136.794 -91.1553
11 31.5088 -120.760
12 -3.54461 -79.9276
13 -13.4296 -66.9845
14 -87.6190 -26.6449
15 -5.50098 16.0659
16 7.12519 5.17419
17 11.4464 0.998665
18 13.4641 -1.63380
19 14.1127 -3.54582
20 13.7892 -4.74643
21 13.0774 -5.17873
22 12.3533 -5.02351
23 11.8466 -4.56626
24 11.5068 -4.01206
25 11.2853 -3.44555
26 11.1333 -2.86084
27 11.0731 -2.29099
28 11.0778 -1.76971
29 11.0964 -1.32471
30 11.0774 -0.909546
31 11.0312 -0.474152
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B-2.2 Gabor Basis
Table B-6. Gabor- Spectral value
basis spectral Coefficient
coefficients: 114.3-cm number Real Imaginary
dipole, pruned basis. 0 -50.9963 0.00000

1 62.0448 219.153
2 -72.8635 -324.768
3 46.0480 229.264
4 -1.98621 -71.8854
5 -15.2368 -27.7820
6 -0.729738 64.4972
7 16.3227 -42.5209
8 -103434 9.20498
9 -0.798927 3.99802

10 7.99257 -2.50583
11 -5.46995 -3.25999
12 -1.27268 3.54381
13 7.04654 -2.32910
14 -10.6560 -0.609302
15 6.78050 3.00796
16 -1.69498 -1.65300
17 0.181264 0.340625
18 0.0225425 -0.0237844
19 0.0275464 -0.00541973
20 0.0122311 -0.0131955
21 0.00910687 -0.0100573
22 0.00210452 -0.00484216
23 0.00670195 -0.00210416
24 0.00562000 -0.00108862
25 0.00737572 -0.00284195
26 0.00469398 -0.00115204
27 0.00564241 -0.000623703
28 0.00635052 0.00126266
29 0.00796127 -0.000312805
30 0.00745773 -0.000991821
31 0.00603294 -0.00151062
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B-2.3 Haar Basis
Table B.7. Haar- Coefficient Spectral Coeffici nt Spectral
wavelet spectral number value number value
coefficients: 114.3-cm
dipole, pruned basis. 0 -318.348 18 797.703

1 -412.075 19 -403743
2 1969. 1 20 424.285
3 2730.24 21 -753.142
4 -650.079 22 -871.667
5 1145.55 23 565207
6 -1021.26 24 838519
7 -910.263 25 -487.526
8 1962.04 26 -306.369
9 -1396.46 27 -599.436
10 -1917.93 28 358.186
11 1178.41 29 415.441
12 1687.99 30 468.311
13 -926.336 31 306.450
14 361.831 32 -122661
15 -2164.12 33 -178.096
16 1649.73 34 -323.860
17 -1099.64 35 -287.776

B-2.4 Gaussian Basis

Table B-8. Gaussian-
basis spectral Coefficient Spectral Coefficient Spectral
coefficients: 114.3-cm number value number value
oipole, pruned basis. 0 -4478.20 15 558.907

1 1420.85 16 112.563
2 3969.81 17 103.262
3 5065.19 18 -724.114
4 -7784.11 19 -1050.48
5 7366.77 20 -458.221
6 -6493.34 21 -33.8032
7 1249.36 22 760.483
8 -2825.20 23 1015.33
9 1091.52 24 516.326
10 2857.55 25 10.3358
11 -1.39.60 26 -683.137
12 -2713.72 27 -918.706
13 -17.7338 28 -530.018
14 286.460 -
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B-3. Complete Bases-166.4-cm Dipole

B-3.1 Fourier Basis
Table B-9. Fourier-
basis spectral Spectral value
coefficients: 166.4-cm Coefficient
dipole, complete number Real Imaginary
basis. 0 155.794 0.00000

1 842.386 121.711
2 -271.411 -500.053
3 280.990 -165.962
4 -387.522 92.6497
5 -51.7679 -123.051
6 112217 -32.6778
7 -135.732 99.3113
8 -48.7457 -36.4133
9 9.97179 21.9274
10 -73.0809 0.753423
11 -31.2626 -21.6165
12 -33-3348 3.34908
13 -37.5577 -1731 17
14 -25.5063 -173839
15 -24.9856 -15.7142
16 -20.5201 -172109
17 -16.5656 -15.5480
18 -14.3222 -132945
19 -13.0861 -113297
20 -12 3304 -9.72575
21 -11.8306 -8.40200
22 -11.4382 -7.27759
23 -11.1068 -6.23325
Z4 -10.9137 -5.23159
2.5 -10.8590 -4.35902
Z6 -10.8363 -3.63212
27 -10.7953 -2.98314
20 -10.7467 -2.37737
" -10,6837 -1.79269

-10.6216 -1.19049
31 -10.5992 -0.581936
32 -10.6011 -0.00000
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B-3.2 Gabor Basis
Table B-10. Gabor.
basis spectral Spectral value
coefficients: 166.4-cm Coefficient
dipole, complete number Real Imaginary
basis. 0 -153289 0.00000

1 162.400 -53.5448
2 -156.440 59.7848
3 127.778 -135210
4 --84.7642 -26.6836
5 23.8562 26.1450
6 20.4341 -1.47396
7 -245748 -17.6055
8 6.16998 18.0633
9 8.11839 -9.37920
10 -10.2153 1.11616
11 5.34816 3.32283
12 -0.966001 -3.81853
13 -1.03745 2.17067
14 1.03316 -0.438081
15 -0.545132 -0.176550
16 0.102180 0.240295
17 0.0275498 -0.0353552
18 -0.00494087 0.00388557
19 -0.00555599 0.00526774
20 -0.00391239 0.00515366
21 -0.00630164 0.00308573
22 -0.00741911 0.00583124
23 -0.00314236 0.00573063
24 --0.00270629 0.000896454
25 -0.00668144 -8.86917e-05
26 -0.00715160 0.00215673
27 -0.00570107 0.00155163
28 -0.00666428 0.000817299
29 -0.00656128 0.00213718
30 -0.00468445 0.00123787
31 -0.00553894 -0.000944138
32 -0.0070M719 0.00000
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B-3.3 Haar Basis
Table B-il. Haar-wavelet spectral Coefficient Spectral Coefficient Spectral
waoeffcents:ctrl number value number valuecoefficients: 166.4-cm

dipole, complete 0 155.794 32 -221.686
basis. 1 114.876 33 -38.7012

2 269.799 34 142.952
3 -1651.21 35 -53.9926
4 109.578 36 -14.0844
5 1455.16 37 39.8749
6 -794.996 38 108.954
7 -749.856 39 71.9592
8 36.6732 40 -112.063
9 266.106 41 -343.393
10 -980.033 42 -311.842
11 955.627 43 305.661
12 -579.728 44 620.157
13 166.376 45 269.477
14 -762.751 46 134.966
15 298.787 47 139.914
16 -465.034 48 30.7699
17 43.7898 49 -101.723
18 15.6279 50 -209.574
19 198.123 51 -226.604
20 -460.418 52 -104.065
21 -53.7968 53 67.2802
22 912.990 54 85.7187
23 287.332 55 -102.882
24 -71.8227 56 -232.326
25 -452.588 57 -195.090
26 -30.9309 58 -178.009
27 -3.02547 59 -176.367
28 -436.778 60 -105.670
29 -360.332 61 16.0564
30 -93.4034 62 143.239
31 366.571 63 211.862
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B-3.4 Gaussian Basis
Table B-2i . Gaussian. Coefficient Spectral Coefficient Spectral
baifficintra n number value number valuecoefficients: 166.4-an

dipole, complete 0 -9920.62 16 102.444
basis. 1 1485.52 17 144.040

2 -880.968 18 29.1049
3 968.286 19 71.6920
4 2001.88 20 546.099
5 -1617.14 21 -134.097
6 3484.67 22 -478.978
7 681.320 23 -607.070
8 383.840 24 -364.902
9 1169.61 25 -112.063
10 -1272.48 26 -214.072
11 -1845.40 27 39.4208
12 -555.947 28 339.390
13 690.788 29 557.405
14 1903.94 30 433.231
15 154.830
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Appendix C

This appendix tabulates the detailed results of the individual analy-
ses. The first table in each section herein was also presented in sec-
tion 3.5 in the main body of the report; these results are repeated
here for ease of comparison with the rest of the results detailed in
this section. The second tables in the first three sections (C-2.1
through C-2.3) identify the number of recognitions for each target
and transform method. The last column in the second table in these
sections lists the maximum false-alarm correlation for each trans-
form method. The results are tabulated in a combined manner in the
remaining sections.

C-1. Image 1: Complete Bases

Image 1 is for Run 1, west-west polarized; there are four 114.3-cm
targets in the image. Table C-1 gives correlation values.

Table C-1. Image 1 Target correlation coefficients by
recognition dipole orientation
performance: Transform Thresh- No. false
Correlation values, method Vertical East West Horizontal old alarms
complete bases. FFT 0592 0.514 0.719 0811 0.50 8,855

Gabor 0.629 0.610 0.825 0.887 0.60 1,636
Haar 0.348 0304 0357 0371 0.30 63,527
Gaussian 0.872 0.801 0.927 0.912 0.80 1,056

(Note: In this example, the thresholds were set so that a single recognition was
guaranteed for each transform method.)

C-2. Image 1: Pruned Bases

Table C-2 gives values correlation for the pruned bases of image 1;
table C-3 gives the number of recognitions.

Table C-2. Image 1 Target correlation coefficients by
recognition dipole orientation
performance: Transform Thresh- No. false
Correlation values, method Vertical East West Horizontal old alarms
pruned bases. FFT 0.658 0.606 0.808 0.922 0.60 8,709

Gabor 0.699 0.668 0.947 0.985 0.66 18,131
Haar 0.759 0.627 0.853 0.921 0.60 4,845
Gaussian 0.904 0.840 0.915 0.977 0.80 1,146

Table C-3. Image 1
recognition Target correlation coefficients by
performance: Number dipole orientation Max

of recognitions. Transform false-alarm
method Vertical East West Horizontal correlation

FFT 12 2 64 110 0.89
Gabar 13 12 54 105 0.98
Haar 16 16 36 76 0.85
Gaussian 5 3 23 72 0.95

91



Appendix C

C-3. Image 2

Image 2 is for Run 1, east-west polarized; there are four 114.3-cm tar-
gets in the image. Table C-4 gives correiation values and table C-5
gives number of recognitions.

Table C4. Image 2 Target correlation coefficients by
recognition dipole orientation
performance: Transform Thresh- No. false
Correlation values, method Vertical East West Horizontal old alarms

FFT X 0.698 0.784 0.845 0.60 8,020
Gabor X 0.822 0.889 0.894 0.66 35,748
Haar 0.663 0.728 0.810 0.812 0.60 3,973
Gaussian X 0.863 0.939 0.925 0.80 1,172
X = not recognized

Table C-S. Image 2 Target correlation coefficients by
recognition dipole orientation Max
performance: Number Transform false-alarm
of recognitions, method Vertical East West Horizontal correlation

ITT X 14 120 61 0.881
Gabor X 40 40 29 0.983
Haar 4 6 68 49 0.864
Gaussian X 2 56 29 0.948

X = not recognized

C-4. Image 3

Image 3 is for Run 4, west-west polarized; there is one 114.3-cm tar-
get in the image. Table C-6 gives recognition performance

Table C-6. Image 3 Max
recognition Transform Correlation coefficients No. of No. 'alse false-alarm
performance. method for east target recognitions alarms correlation

FFT 0.620 2 5,182 0.904
Gabor 0.863 30 12,068 0.979
Haar X X 2,099 0.887
Gaussian 0.925 10 503 0.902

X a not recognized

C-5. Image 4

Image 4 is for Run 6, west-west polarized; there is one 114.3-cm tar-
get in the image. Table C-7 gives recognition performance.

Table C-7. Image 4 Max
recognition Transform Correlation coefficients No. of No. false false-alarm
performance. method for east target recognitions alarms correlation

FFT X X 13,019 0.915
Gabor X X 29,101 0.985
Haar 0.668 2 7,054 0.898
Gaussian 0.846 10 2,601 0.957

X - not recognized
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C-6. Image 5: 114.3-cm Dipole

Image 5 is for Run 7, west-west polarized. There is one 114.3-cm tar-
get and one 166.4-cm target in the image; table C-8 summarizes the
recognition performance for the 114.3-cm target.

Table C-S. Image S
recognition Correlation coefficients Max
performance, 114.3-cm Transform for east target No. of No. false false-alarm
dipole, method (114.3 cm) recognitions alarms correlation

FFT 0.603 1 2,223 0.808
Gabor 0.735 7 10,627 0.975
Haar 0.688 2 1,424 0.816
Gaussian 0.811 1 387 0.953

C-7. Image 5: 166.4-cm Dipole

Table C-9 summarizes the recognition performance for the 166.4-cm
target in image 5. (Note: For this case, the thresholds were set to en-
sure at least one recognition for each transform method.)

Table C-9. Image 5 Correlation coefficients Max
recognition Transform for east target No. of No. false false-alarm
performance, 166.4-cm method (166.4 an) recognitions alarms correlation
dipole. FFr 0.573 2 16,280 0.842

Gabor 0.665 1 53,273 0.978
Haar 0.565 1 2,072 0.777
Gaussian 0.849 1 5,265 0.978
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